6,537 research outputs found

    Maximizing sum rate and minimizing MSE on multiuser downlink: Optimality, fast algorithms and equivalence via max-min SIR

    Get PDF
    Maximizing the minimum weighted SIR, minimizing the weighted sum MSE and maximizing the weighted sum rate in a multiuser downlink system are three important performance objectives in joint transceiver and power optimization, where all the users have a total power constraint. We show that, through connections with the nonlinear Perron-Frobenius theory, jointly optimizing power and beamformers in the max-min weighted SIR problem can be solved optimally in a distributed fashion. Then, connecting these three performance objectives through the arithmetic-geometric mean inequality and nonnegative matrix theory, we solve the weighted sum MSE minimization and weighted sum rate maximization in the low to moderate interference regimes using fast algorithms

    Juries and Justice: Are Malpractice and Other Personal Injuries Created Equal?

    Get PDF
    A study analyzed the civil jury system and the difference in personal injury awards between automobile and deep-pocket defendants, especially in medical malpractice cases. Six conclusions were reached, including the finding that juries sometimes respond emotionally and award some objectively similar cases higher damages than others

    Self-Dual Conformal Supergravity and the Hamiltonian Formulation

    Full text link
    In terms of Dirac matrices the self-dual and anti-self-dual decomposition of a conformal supergravity is given and a self-dual conformal supergravity theory is developed as a connection dynamic theory in which the basic dynamic variabes include the self-dual spin connection i.e. the Ashtekar connection rather than the triad. The Hamiltonian formulation and the constraints are obtained by using the Dirac-Bergmann algorithm. PACS numbers: 04.20.Cv, 04.20.Fy,04.65.+

    A Pair of Disjoint 3-GDDs of type g^t u^1

    Full text link
    Pairwise disjoint 3-GDDs can be used to construct some optimal constant-weight codes. We study the existence of a pair of disjoint 3-GDDs of type gtu1g^t u^1 and establish that its necessary conditions are also sufficient.Comment: Designs, Codes and Cryptography (to appear

    The Constraints and Spectra of a Deformed Quantum Mechanics

    Full text link
    We examine a deformed quantum mechanics in which the commutator between coordinates and momenta is a function of momenta. The Jacobi identity constraint on a two-parameter class of such modified commutation relations (MCR's) shows that they encode an intrinsic maximum momentum; a sub-class of which also imply a minimum position uncertainty. Maximum momentum causes the bound state spectrum of the one-dimensional harmonic oscillator to terminate at finite energy, whereby classical characteristics are observed for the studied cases. We then use a semi-classical analysis to discuss general concave potentials in one dimension and isotropic power-law potentials in higher dimensions. Among other conclusions, we find that in a subset of the studied MCR's, the leading order energy shifts of bound states are of opposite sign compared to those obtained using string-theory motivated MCR's, and thus these two cases are more easily distinguishable in potential experiments.Comment: 30 pages inclusive of 7 figure

    Genome-wide detection of segmental duplications and potential assembly errors in the human genome sequence

    Get PDF
    BACKGROUND: Previous studies have suggested that recent segmental duplications, which are often involved in chromosome rearrangements underlying genomic disease, account for some 5% of the human genome. We have developed rapid computational heuristics based on BLAST analysis to detect segmental duplications, as well as regions containing potential sequence misassignments in the human genome assemblies. RESULTS: Our analysis of the June 2002 public human genome assembly revealed that 107.4 of 3,043.1 megabases (Mb) (3.53%) of sequence contained segmental duplications, each with size equal or more than 5 kb and 90% identity. We have also detected that 38.9 Mb (1.28%) of sequence within this assembly is likely to be involved in sequence misassignment errors. Furthermore, we have identified a significant subset (199,965 of 2,327,473 or 8.6%) of single-nucleotide polymorphisms (SNPs) in the public databases that are not true SNPs but are potential paralogous sequence variants. CONCLUSION: Using two distinct computational approaches, we have identified most of the sequences in the human genome that have undergone recent segmental duplications. Near-identical segmental duplications present a major challenge to the completion of the human genome sequence. Potential sequence misassignments detected in this study would require additional efforts to resolve
    corecore