54 research outputs found

    Contribution of NFP LysM Domains to the Recognition of Nod Factors during the Medicago truncatula/Sinorhizobium meliloti Symbiosis

    Get PDF
    The root nodule nitrogen fixing symbiosis between legume plants and soil bacteria called rhizobia is of great agronomical and ecological interest since it provides the plant with fixed atmospheric nitrogen. The establishment of this symbiosis is mediated by the recognition by the host plant of lipo-chitooligosaccharides called Nod Factors (NFs), produced by the rhizobia. This recognition is highly specific, as precise NF structures are required depending on the host plant. Here, we study the importance of different LysM domains of a LysM-Receptor Like Kinase (LysM-RLK) from Medicago truncatula called Nod factor perception (NFP) in the recognition of different substitutions of NFs produced by its symbiont Sinorhizobium meliloti. These substitutions are a sulphate group at the reducing end, which is essential for host specificity, and a specific acyl chain at the non-reducing end, that is critical for the infection process. The NFP extracellular domain (ECD) contains 3 LysM domains that are predicted to bind NFs. By swapping the whole ECD or individual LysM domains of NFP for those of its orthologous gene from pea, SYM10 (a legume plant that interacts with another strain of rhizobium producing NFs with different substitutions), we showed that NFP is not directly responsible for specific recognition of the sulphate substitution of S. meliloti NFs, but probably interacts with the acyl substitution. Moreover, we have demonstrated the importance of the NFP LysM2 domain for rhizobial infection and we have pinpointed the importance of a single leucine residue of LysM2 in that step of the symbiosis. Together, our data put into new perspective the recognition of NFs in the different steps of symbiosis in M. truncatula, emphasising the probable existence of a missing component for early NF recognition and reinforcing the important role of NFP for NF recognition during rhizobial infection

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    On board LNG reliquefaction technology: a comparative study

    No full text
    Reliquefaction technologies are being currently applied on board liquefied natural gas (LNG) carriers on the basis of economic criteria and energy efficiency. A variety of reliquefaction techniques have been developed so far during the last decade. Nevertheless, technology enhancement continues being a research area of interest. In this article the different technologies applied to the reliquefaction of the boil-off gas (BOG) on LNG carriers have been described, analysed and discussed, contributing to highlight the process and operation characteristics as well as selection plant criteria. Finally, a comparison of the different reliquefaction plants, considering their capacities and efficiencies as well as other technical data of interest has been carried out

    Pressurized concentrated solar power receiver designed to operate with closed Brayton cycles

    No full text
    Abstract. Parabolic through and parabolic dish concentrators (PDC) followed by a volumetric receiver is proposed, studying the performance behavior of a closed Brayton cycle (CBC) operating with He and N2. A pressurized gas (helium, nitrogen) circulates along the volumetric receiver capturing the concentrated thermal solar energy which is converted into mechanical energy by a CBC. The overall efficiency of the plant (PC-Receiver + CBC) is being computed under variable parameters to determine the operating conditions for which efficiency is acceptable. As consequence of the proposed analysis, it is concluded that direct coupling between volumetric receiver and thermal engine renders high efficiency while avoiding a heat exchanger
    • …
    corecore