95 research outputs found

    Thermodynamic Properties of the Spin-1/2 Antiferromagnetic ladder Cu2(C2H12N2)2Cl4 under Magnetic Field

    Full text link
    Specific heat (CVC_V) measurements in the spin-1/2 Cu2_2(C2_2H12_{12}N2_2)2_2Cl4_4 system under a magnetic field up to H=8.25TH=8.25 T are reported and compared to the results of numerical calculations based on the 2-leg antiferromagnetic Heisenberg ladder. While the temperature dependences of both the susceptibility and the low field specific heat are accurately reproduced by this model, deviations are observed below the critical field HC1H_{C1} at which the spin gap closes. In this Quantum High Field phase, the contribution of the low-energy quantum fluctuations are stronger than in the Heisenberg ladder model. We argue that this enhancement can be attributed to dynamical lattice fluctuations. Finally, we show that such a Heisenberg ladder, for H>HC1H>H_{C1}, is unstable, when coupled to the 3D lattice, against a lattice distortion. These results provide an alternative explanation for the observed low temperature (TC0.5KT_C\sim 0.5K -- 0.8K0.8K) phase (previously interpreted as a 3D magnetic ordering) as a new type of incommensurate gapped state.Comment: Minor changes, list of authors complete

    Field-Induced Magnetic Order in Quantum Spin Liquids

    Full text link
    We study magnetic field-induced three-dimensional ordering transitions in low-dimensional quantum spin liquids, such as weakly coupled, antiferromagnetic spin-1/2 Heisenberg dimers and ladders. Using stochastic series expansion quantum Monte Carlo simulations, thermodynamic response functions are obtained down to ultra-low temperatures. We extract the critical scaling exponents which dictate the power-law dependence of the transition temperature on the applied magnetic field. These are compared with recent experiments on candidate materials and with predictions for the Bose-Einstein condensation of magnons obtained in mean-field theory.Comment: RevTex, 4 pages with 5 figure

    Investigation of thermal and magnetic properties of defects in a spin-gap compound NaV2O5

    Full text link
    The specific heat, magnetic susceptibility and ESR signals of a Na-deficient vanadate Na_xV_2O_5 (x=1.00 - 0.90) were studied in the temperature range 0.07 - 10 K, well below the transition point to a spin-gap state. The contribution of defects provided by sodium vacancies to the specific heat was observed. It has a low temperature part which does not tend to zero till at least 0.3 K and a high temperature power-like tail appears above 2 K. Such dependence may correspond to the existence of local modes and correlations between defects in V-O layers. The magnetic measurements and ESR data reveal S=1/2 degrees of freedom for the defects, with their effective number increasing in temperature and under magnetic field. The latter results in the nonsaturating magnetization at low temperature. No long-range magnetic ordering in the system of defects was found. A model for the defects based on electron jumps near vacancies is proposed to explain the observed effects. The concept of a frustrated two-dimensional correlated magnet induced by the defects is considered to be responsible for the absence of magnetic ordering.Comment: 6 pages, 8 figure

    Dynamical spin correlations in Heisenberg ladder under magnetic field and correlation functions in SO(5) ladder

    Full text link
    The zero-temperature dynamical spin-spin correlation functions are calculated for the spin-1/2 two-leg Heisenberg ladder in a magnetic field above the lower critical field Hc1. The dynamical structure factors are calculated which exhibit both massless and massive excitations. These modes appear in different sectors characterized by the parity in the rung direction and by the momentum in the direction of the chains. The structure factors have power-law singularities at the lower edges of their support. The results are also applicable to spin-1 Heisenberg chain. The implications are briefly discussed for various correlation functions and the pi-resonance in the SO(5) symmetric ladder model.Comment: 15 pages, 6 figures, added references; final version to appear in Phys. Rev.

    Aging in a topological spin glass

    Full text link
    We have examined the nonconventional spin glass phase of the 2-dimensional kagome antiferromagnet (H_3 O) Fe_3 (SO_4)_2 (OH)_6 by means of ac and dc magnetic measurements. The frequency dependence of the ac susceptibility peak is characteristic of a critical slowing down at Tg ~ 18K. At fixed temperature below Tg, aging effects are found which obey the same scaling law as in spin glasses or polymers. However, in clear contrast with conventional spin glasses, aging is remarkably insensitive to temperature changes. This particular type of dynamics is discussed in relation with theoretical predictions for highly frustrated non-disordered systems.Comment: 4 pages, 4 figure

    Frustrated 3-Dimensional Quantum Spin Liquid in CuHpCl

    Full text link
    Inelastic neutron scattering measurements are reported for the quantum antiferromagnetic material Cu_2(C_5H_12N_2)_2Cl_4 (CuHpCl). The magnetic excitation spectrum forms a band extending from 0.9 meV to 1.4 meV. The spectrum contains two modes that disperse throughout the a-c plane of the monoclinic unit cell with less dispersion along the unique b-axis. Simple arguments based on the measured dispersion relations and the crystal structure show that a spin ladder model is inappropriate for describing CuHpCl. Instead, it is proposed that hydrogen bond mediated exchange interactions between the bi-nuclear molecular units yield a three-dimensional interacting spin system with a recurrent triangular motif similar to the Shastry-Sutherland Model (SSM). Model independent analysis based on the first moment sum rule shows that at least four distinct spin pairs are strongly correlated and that two of these, including the dimer bond of the corresponding SSM, are magnetically frustrated. These results show that CuHpCl should be classified as a frustration induced three dimensional quantum spin liquid.Comment: 13 pages, 17 figures (Color) ReSubmitted to Phys. Rev. B 9/21/2001 resubmission has new content email comments to [email protected] or [email protected]

    Low-temperature specific heat and thermal conductivity of glycerol

    Full text link
    We have measured the thermal conductivity of glassy glycerol between 1.5 K and 100 K, as well as the specific heat of both glassy and crystalline phases of glycerol between 0.5 K and 25 K. We discuss both low-temperature properties of this typical molecular glass in terms of the soft-potential model. Our finding of an excellent agreement between its predictions and experimental data for these two independent measurements constitutes a robust proof of the capabilities of the soft-potential model to account for the low-temperature properties of glasses in a wide temperature range.Comment: 4 pages, 3 figures. To be published in Phys. Rev. B (2002

    The Magnetic Spin Ladder (C_{5}H_{12}N)_{2}CuBr_{4}: High Field Magnetization and Scaling Near Quantum Criticality

    Full text link
    The magnetization, M(H30M(H \leq 30 T, 0.7 K T300\leq T \leq 300 K), from single crystals and powder samples of (C5_{5}H12_{12}N)2_{2}CuBr4_{4} has been used to identify this system as an S=1/2S=1/2 Heisenberg two-leg ladder in the strong coupling limit, J=13.3J_{\perp} = 13.3 K and J=3.8J_{\parallel} = 3.8 K, with Hc1=6.6H_{c1} = 6.6 T and Hc2=14.6H_{c2} = 14.6 T. An inflection point in M(H,T=0.7M(H, T = 0.7 K) at half-saturation, Ms/2M_{s}/2, is described by an effective \emph{XXZ} chain. The data exhibit universal scaling behavior in the vicinity of Hc1H_{c1} and Hc2H_{c2}, indicating the system is near a quantum critical point.Comment: 4 pages, 4 figure
    corecore