1,230 research outputs found
A Method for Individual Source Brightness Estimation in Single- and Multi-band Data
We present a method of reliably extracting the flux of individual sources
from sky maps in the presence of noise and a source population in which number
counts are a steeply falling function of flux. The method is an extension of a
standard Bayesian procedure in the millimeter/submillimeter literature. As in
the standard method, the prior applied to source flux measurements is derived
from an estimate of the source counts as a function of flux, dN/dS. The key
feature of the new method is that it enables reliable extraction of properties
of individual sources, which previous methods in the literature do not. We
first present the method for extracting individual source fluxes from data in a
single observing band, then we extend the method to multiple bands, including
prior information about the spectral behavior of the source population(s). The
multi-band estimation technique is particularly relevant for classifying
individual sources into populations according to their spectral behavior. We
find that proper treatment of the correlated prior information between
observing bands is key to avoiding significant biases in estimations of
multi-band fluxes and spectral behavior, biases which lead to significant
numbers of misclassified sources. We test the single- and multi-band versions
of the method using simulated observations with observing parameters similar to
that of the South Pole Telescope data used in Vieira, et al. (2010).Comment: 11 emulateapj pages, 3 figures, revised to match published versio
Interpreting The Unresolved Intensity Of Cosmologically Redshifted Line Radiation
Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically approximately 10(sup 2)-10(Sup 3) times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of fore-grounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest
Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications
Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions
Lack of clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities
We report results from 21-cm intensity maps acquired from the Parkes radio
telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The
data span the redshift range and cover approximately 1,300
square degrees over two long fields. Cross correlation is detected at a
significance of . The amplitude of the cross-power spectrum is low
relative to the expected dark matter power spectrum, assuming a neutral
hydrogen (HI) bias and mass density equal to measurements from the ALFALFA
survey. The decrement is pronounced and statistically significant at small
scales. At , the cross power spectrum is more
than a factor of 6 lower than expected, with a significance of .
This decrement indicates either a lack of clustering of neutral hydrogen (HI),
a small correlation coefficient between optical galaxies and HI, or some
combination of the two. Separating 2dF into red and blue galaxies, we find that
red galaxies are much more weakly correlated with HI on scales, suggesting that HI is more associated with blue
star-forming galaxies and tends to avoid red galaxies.Comment: 12 pages, 3 figures; fixed typo in meta-data title and paper author
Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-delay Polarization Modulators
Variable-delay Polarization Modulators (VPMs) are currently being implemented
in experiments designed to measure the polarization of the cosmic microwave
background on large angular scales because of their capability for providing
rapid, front-end polarization modulation and control over systematic errors.
Despite the advantages provided by the VPM, it is important to identify and
mitigate any time-varying effects that leak into the synchronously modulated
component of the signal. In this paper, the effect of emission from a K
VPM on the system performance is considered and addressed. Though instrument
design can greatly reduce the influence of modulated VPM emission, some
residual modulated signal is expected. VPM emission is treated in the presence
of rotational misalignments and temperature variation. Simulations of
time-ordered data are used to evaluate the effect of these residual errors on
the power spectrum. The analysis and modeling in this paper guides
experimentalists on the critical aspects of observations using VPMs as
front-end modulators. By implementing the characterizations and controls as
described, front-end VPM modulation can be very powerful for mitigating
noise in large angular scale polarimetric surveys. None of the systematic
errors studied fundamentally limit the detection and characterization of
B-modes on large scales for a tensor-to-scalar ratio of . Indeed,
is achievable with commensurately improved characterizations and
controls.Comment: 13 pages, 13 figures, 1 table, matches published versio
Primordial helium recombination. I. Feedback, line transfer, and continuum opacity
Precision measurements of the cosmic microwave background temperature anisotropy on scales ℓ>500 will be available in the near future. Successful interpretation of these data is dependent on a detailed understanding of the damping tail and cosmological recombination of both hydrogen and helium. This paper and two companion papers are devoted to a precise calculation of helium recombination. We discuss several aspects of the standard recombination picture, and then include feedback, radiative transfer in He i lines with partial redistribution, and continuum opacity from H i photoionization. In agreement with past calculations, we find that He ii recombination proceeds in Saha equilibrium, whereas He i recombination is delayed relative to Saha due to the low rates connecting excited states of He i to the ground state. However, we find that at z<2200 the continuum absorption by the rapidly increasing H i population becomes effective at destroying photons in the He i 21Po-11S line, causing He i recombination to finish around z≃1800, much earlier than previously estimated
- …