401 research outputs found

    Quantum phase transition in an atomic Bose gas with a Feshbach resonance

    Full text link
    We show that in an atomic Bose gas near a Feshbach resonance a quantum phase transition occurs between a phase with only a molecular Bose-Einstein condensate and a phase with both an atomic and a molecular Bose-Einstein condensate. We show that the transition is characterized by an Ising order parameter. We also determine the phase diagram of the gas as a function of magnetic field and temperature: the quantum critical point extends into a line of finite temperature Ising transitions.Comment: 4 pages, 2 figure

    Fast rotating stars resulting from binary evolution will often appear to be single

    Full text link
    Rapidly rotating stars are readily produced in binary systems. An accreting star in a binary system can be spun up by mass accretion and quickly approach the break-up limit. Mergers between two stars in a binary are expected to result in massive, fast rotating stars. These rapid rotators may appear as Be or Oe stars or at low metallicity they may be progenitors of long gamma-ray bursts. Given the high frequency of massive stars in close binaries it seems likely that a large fraction of rapidly rotating stars result from binary interaction. It is not straightforward to distinguish a a fast rotator that was born as a rapidly rotating single star from a fast rotator that resulted from some kind of binary interaction. Rapidly rotating stars resulting from binary interaction will often appear to be single because the companion tends to be a low mass, low luminosity star in a wide orbit. Alternatively, they became single stars after a merger or disruption of the binary system during the supernova explosion of the primary. The absence of evidence for a companion does not guarantee that the system did not experience binary interaction in the past. If binary interaction is one of the main causes of high stellar rotation rates, the binary fraction is expected to be smaller among fast rotators. How this prediction depend on uncertainties in the physics of the binary interactions requires further investigation.Comment: 2 pages, 1 figure, to be published in the proceedings of IAU 272 "Active OB stars: structure, evolution, mass loss and critical limit", Paris 19-23 July 201

    Cosmological Multi-Black Hole Solutions

    Get PDF
    We present simple, analytic solutions to the Einstein-Maxwell equation, which describe an arbitrary number of charged black holes in a spacetime with positive cosmological constant Λ\Lambda. In the limit Λ=0\Lambda=0, these solutions reduce to the well known Majumdar-Papapetrou (MP) solutions. Like the MP solutions, each black hole in a Λ>0\Lambda >0 solution has charge QQ equal to its mass MM, up to a possible overall sign. Unlike the Λ=0\Lambda = 0 limit, however, solutions with Λ>0\Lambda >0 are highly dynamical. The black holes move with respect to one another, following natural trajectories in the background deSitter spacetime. Black holes moving apart eventually go out of causal contact. Black holes on approaching trajectories ultimately merge. To our knowledge, these solutions give the first analytic description of coalescing black holes. Likewise, the thermodynamics of the Λ>0\Lambda >0 solutions is quite interesting. Taken individually, a ∣Q∣=M|Q|=M black hole is in thermal equilibrium with the background deSitter Hawking radiation. With more than one black hole, because the solutions are not static, no global equilibrium temperature can be defined. In appropriate limits, however, when the black holes are either close together or far apart, approximate equilibrium states are established.Comment: 15 pages (phyzzx), UMHEP-380 (minor referencing error corrected

    General Brane Geometries from Scalar Potentials: Gauged Supergravities and Accelerating Universes

    Full text link
    We find broad classes of solutions to the field equations for d-dimensional gravity coupled to an antisymmetric tensor of arbitrary rank and a scalar field with non-vanishing potential. Our construction generates these configurations from the solution of a single nonlinear ordinary differential equation, whose form depends on the scalar potential. For an exponential potential we find solutions corresponding to brane geometries, generalizing the black p-branes and S-branes known for the case of vanishing potential. These geometries are singular at the origin with up to two (regular) horizons. Their asymptotic behaviour depends on the parameters of the model. When the singularity has negative tension or the cosmological constant is positive we find time-dependent configurations describing accelerating universes. Special cases give explicit brane geometries for (compact and non-compact) gauged supergravities in various dimensions, as well as for massive 10D supergravity, and we discuss their interrelation. Some examples lift to give new solutions to 10D supergravity. Limiting cases with a domain wall structure preserve part of the supersymmetries of the vacuum. We also consider more general potentials, including sums of exponentials. Exact solutions are found for these with up to three horizons, having potentially interesting cosmological interpretation. We give several additional examples which illustrate the power of our techniques.Comment: 54 pages, 6 figures. Uses JHEP3. Published versio

    Dirichlet-Branes and Ramond-Ramond Charges

    Get PDF
    We show that Dirichlet-branes, extended objects defined by mixed Dirichlet-Neumann boundary conditions in string theory, break half of the supersymmetries of the type~II superstring and carry a complete set of electric and magnetic Ramond-Ramond charges. We also find that the product of the electric and magnetic charges is a single Dirac unit, and that the quantum of charge takes the value required by string duality. This is strong evidence that the Dirchlet-branes are intrinsic to type II string theory and are the Ramond-Ramond sources required by string duality. We also note the existence of a previously overlooked 9-form potential in the IIa string, which gives rise to an effective cosmological constant of undetermined magnitude.Comment: LaTeX, 10 pages. Minor typos corrected in eq. 8, 9, 13. References added to [11

    Symmetric Potentials of Gauged Supergravities in Diverse Dimensions and Coulomb Branch of Gauge Theories

    Get PDF
    A class of conformally flat and asymptotically anti-de Sitter geometries involving profiles of scalar fields is studied from the point of view of gauged supergravity. The scalars involved in the solutions parameterise the SL(N,R)/SO(N) submanifold of the full scalar coset of the gauged supergravity, and are described by a symmetric potential with a universal form. These geometries descend via consistent truncation from distributions of D3-branes, M2-branes, or M5-branes in ten or eleven dimensions. We exhibit analogous solutions asymptotic to AdS_6 which descend from the D4-D8-brane system. We obtain the related six-dimensional theory by consistent reduction from massive type IIA supergravity. All our geometries correspond to states in the Coulomb branch of the dual conformal field theories. We analyze linear fluctuations of minimally coupled scalars and find both discrete and continuous spectra, but always bounded below.Comment: Latex, 38 pages, minor correction

    The Operator Product Expansion of the Lowest Higher Spin Current at Finite N

    Full text link
    For the N=2 Kazama-Suzuki(KS) model on CP^3, the lowest higher spin current with spins (2, 5/2, 5/2,3) is obtained from the generalized GKO coset construction. By computing the operator product expansion of this current and itself, the next higher spin current with spins (3, 7/2, 7/2, 4) is also derived. This is a realization of the N=2 W_{N+1} algebra with N=3 in the supersymmetric WZW model. By incorporating the self-coupling constant of lowest higher spin current which is known for the general (N,k), we present the complete nonlinear operator product expansion of the lowest higher spin current with spins (2, 5/2, 5/2, 3) in the N=2 KS model on CP^N space. This should coincide with the asymptotic symmetry of the higher spin AdS_3 supergravity at the quantum level. The large (N,k) 't Hooft limit and the corresponding classical nonlinear algebra are also discussed.Comment: 62 pages; the footnotes added, some redundant appendices removed, the presentations in the whole paper improved and to appear in JHE

    Anisotropic Four-Dimensional NS-NS String Cosmology

    Get PDF
    An anisotropic (Bianchi type I) cosmology is considered in the four-dimensional NS-NS sector of low-energy effective string theory coupled to a dilaton and an axion-like HH-field within a de Sitter-Einstein frame background. The time evolution of this Universe is discussed in both the Einstein and string frames.Comment: Revtex, 5 pages, 3 figure

    Charged Nariai Black Holes With a Dilaton

    Get PDF
    The Reissner-Nordstrom-de Sitter black holes of standard Einstein-Maxwell theory with a cosmological constant have no analogue in dilatonic theories with a Liouville potential. The only exception are the solutions of maximal mass, the Charged Nariai solutions. We show that the structure of the solution space of the Dilatonic Charged Nariai black holes is quite different from the non-dilatonic case. Its dimensionality depends on the exponential coupling constants of the dilaton. We discuss the possibility of pair creating such black holes on a suitable background. We find conditions for the existence of Charged Nariai solutions in theories with general dilaton potentials, and consider specifically a massive dilaton.Comment: 20 pages, LaTeX, 4 figures, submitted to Phys. Rev.

    Type 0 T-Duality and the Tachyon Coupling

    Get PDF
    We consider the T-duality relations between Type 0A and 0B theories, and show that this constraints the possible couplings of the tachyon to the RR-fields. Due to the `doubling' of the RR sector in Type 0 theories, we are able to introduce a democratic formulation for the Type 0 effective actions, in which there is no Chern-Simons term in the effective action. Finally we discuss how to embed Type II solutions into Type 0 theories.Comment: some misprints corrected and a reference adde
    • 

    corecore