9,793 research outputs found
Correlated two-photon scattering in cavity optomechanics
We present an exact analytical solution of the two-photon scattering in a
cavity optomechanical system. This is achieved by solving the quantum dynamics
of the total system, including the optomechanical cavity and the cavity-field
environment, with the Laplace transform method. The long-time solution reveals
detailed physical processes involved as well as the corresponding resonant
photon frequencies. We characterize the photon correlation induced in the
scattering process by calculating the two-photon joint spectrum of the
long-time state. Clear evidence for photon frequency anti-correlation can be
observed in the joint spectrum. In addition, we calculate the equal-time
second-order correlation function of the cavity photons. The results show that
the radiation pressure coupling can induce photon blockade effect, which is
strongly modulated by the phonon sideband resonance. In particular, we obtain
an explicit expression of optomechanical coupling strength determining these
sideband modulation peaks based on the two-photon resonance condition.Comment: 10 pages, 6 figure
Studying top quark decay into the polarized W-boson in the TC2 model
We study the decay mode of top quark decaying into Wb in the TC2 model where
the top quark is distinguished from other fermions by participating in a strong
interaction. We find that the TC2 correction to the decay width is generally several percent and maximum value can reach 8% for the
currently allowed parameters. The magnitude of such correction is comparable
with QCD correction and larger than that of minimal supersymmetric model. Such
correction might be observable in the future colliders. We also study the TC2
correction to the branching ratio of top quark decay into the polarized W
bosons and find the correction is below . After considering the TC2
correction, we find that our theoretical predictions about the decay branching
ratio are also consistent with the experimental data.Comment: 8 pages, 4 figure
Two-stage clustering in genotype-by-environment analyses with missing data
Cluster analysis has been commonly used in genotype-by-environment (G x E) analyses, but current methods are inadequate when the data matrix is incomplete. This paper proposes a new method, referred to as two-stage clustering, which relies on a partitioning of squared Euclidean distance into
two independent components, the G x E interaction and the genotype main effect. These components are used in the first and second stages of clustering respectively. Two-stage clustering forms the basis for imputing missing values in the G x E matrix so that a more complete data array is available for other GxE analyses. Imputation for a given genotype uses information from genotypes with similar interaction profiles. This imputation method is shown to improve on an existing nearest cluster method that confounds the G x E interaction and the genotype main effect
On the Application of Gluon to Heavy Quarkonium Fragmentation Functions
We analyze the uncertainties induced by different definitions of the momentum
fraction in the application of gluon to heavy quarkonium fragmentation
function. We numerically calculate the initial fragmentation
functions by using the non-covariant definitions of with finite gluon
momentum and find that these fragmentation functions have strong dependence on
the gluon momentum . As , these fragmentation
functions approach to the fragmentation function in the light-cone definition.
Our numerical results show that large uncertainties remains while the
non-covariant definitions of are employed in the application of the
fragmentation functions. We present for the first time the polarized gluon to
fragmentation functions, which are fitted by the scheme exploited in
this work.Comment: 11 pages, 7 figures;added reference for sec.
Electrical properties of breast cancer cells from impedance measurement of cell suspensions
Impedance spectroscopy of biological cells has been used to monitor cell status, e.g. cell proliferation, viability, etc. It is also a fundamental method for the study of the electrical properties of cells which has been utilised for cell identification in investigations of cell behaviour in the presence of an applied electric field, e.g. electroporation. There are two standard methods for impedance measurement on cells. The use of microelectrodes for single cell impedance measurement is one method to realise the measurement, but the variations between individual cells introduce significant measurement errors. Another method to measure electrical properties is by the measurement of cell suspensions, i.e. a group of cells within a culture medium or buffer. This paper presents an investigation of the impedance of normal and cancerous breast cells in suspension using the Maxwell-Wagner mixture theory to analyse the results and extract the electrical parameters of a single cell. The results show that normal and different stages of cancer breast cells can be distinguished by the conductivity presented by each cell. © 2010 IOP Publishing Ltd
Delayed commutation in quantum computer networks
In the same way that classical computer networks connect and enhance the
capabilities of classical computers, quantum networks can combine the
advantages of quantum information and communications. We propose a
non-classical network element, a delayed commutation switch, that can solve the
problem of switching time in packet switching networks. With the help of some
local ancillary qubits and superdense codes we can route the information after
part of it has left the network node.Comment: 4 pages. 4 figures. Preliminar versio
Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation
We explore the effect of spatiotemporally varying substrate temperature
profiles on the dynamics and resulting reaction rate enhancement for the
catalytic oxidation of CO on Pt(110). The catalytic surface is "addressed" by a
focused laser beam whose motion is computer-controlled. The averaged reaction
rate is observed to undergo a characteristic maximum as a function of the speed
of this moving laser spot. Experiments as well as modelling are used to explore
and rationalize the existence of such an optimal laser speed.Comment: 9 pages, 12 figures, submitted to Phys. Rev.
Two-dimensional photonic crystal polarizer
A novel polarizer made from two-dimensional photonic bandgap materials was
demonstrated theoretically. This polarizer is fundamentally different from the
conventinal ones. It can function in a wide frequency range with high
performance and the size can be made very compact, which renders it useful as a
micropolarizer in microoptics.Comment: 8 pages, RevTex, 4 figure
Guiding chemical pulses through geometry: Y-junctions
We study computationally and experimentally the propagation of chemical
pulses in complex geometries.The reaction of interest, CO oxidation, takes
place on single crystal Pt(110) surfaces that are microlithographically
patterned; they are also addressable through a focused laser beam, manipulated
through galvanometer mirrors, capable of locally altering the crystal
temperature and thus affecting pulse propagation. We focus on sudden changes in
the domain shape (corners in a Y-junction geometry) that can affect the pulse
dynamics; we also show how brief, localized temperature perturbations can be
used to control reactive pulse propagation.The computational results are
corroborated through experimental studies in which the pulses are visualized
using Reflection Anisotropy Microscopy.Comment: submitted to Phys. Rev.
- …