24,765 research outputs found

    Microwave emission from spinning dust in circumstellar disks

    Full text link
    In the high density environments of circumstellar disks dust grains are expected to grow to large sizes by coagulation. Somewhat unexpectedly, recent near-IR observations of PAH features from disks around Herbig Ae/Be stars demonstrate that substantial amount of dust mass in these disks (up to several tens of per cent of the total carbon content) can be locked up in particles with sizes ranging from several to tens of nanometers. We investigate the possibility of detecting the electric dipole emission produced by these nanoparticles as they spin at thermal rates (tens of GHz) in cold gas. We show that such emission peaks in the microwave range and dominates over the thermal disk emission at \nu 5 % of the total carbon abundance is locked up in nanoparticles. We test the sensitivity of this prediction to various stellar and disk parameters and show that if the potential contamination of the spinning dust component by the free-free and/or synchrotron emission can be removed, then the best chances of detecting this emission would be in disks with small opacity, having SEDs with steep sub-mm slopes (which minimizes thermal disk emission at GHz frequencies). Detection of the spinning dust emission would provide important evidence for the existence, properties, and origin of the population of small dust particles in protoplanetary disks, with possible ramifications for planet formation.Comment: 9 pages, 3 figures, submitted to Ap

    A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales

    Full text link
    In this work it is shown how the immersed boundary method of (Peskin2002) for modeling flexible structures immersed in a fluid can be extended to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiffness in the system of equations by handling systematically the statistical contributions of the fastest dynamics of the fluid and immersed structures over long time steps. An important feature of the numerical method is that time steps can be taken in which the degrees of freedom of the fluid are completely underresolved, partially resolved, or fully resolved while retaining a good level of accuracy. Error estimates in each of these regimes are given for the method. A number of theoretical and numerical checks are furthermore performed to assess its physical fidelity. For a conservative force, the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is shown in three dimensions that the diffusion of immersed particles simulated with the method has the correct scaling in the physical parameters. The method is also shown to reproduce a well-known hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits an algebraic tau^(-3/2) decay for long times. A few preliminary results are presented for more complex systems which demonstrate some potential application areas of the method.Comment: 52 pages, 11 figures, published in journal of computational physic

    The cognitive demands of second order manual control: Applications of the event related brain potential

    Get PDF
    Three experiments are described in which tracking difficulty is varied in the presence of a covert tone discrimination task. Event related brain potentials (ERPs) elicited by the tones are employed as an index of the resource demands of tracking. The ERP measure reflected the control order variation, and this variable was thereby assumed to compete for perceptual/central processing resources. A fine-grained analysis of the results suggested that the primary demands of second order tracking involve the central processing operations of maintaining a more complex internal model of the dynamic system, rather than the perceptual demands of higher derivative perception. Experiment 3 varied tracking bandwidth in random input tracking, and the ERP was unaffected. Bandwidth was then inferred to compete for response-related processing resources that are independent of the ERP

    NMR evidence for a strong modulation of the Bose-Einstein Condensate in BaCuSi2_2O6_6

    Full text link
    We present a 63,65^{63,65}Cu and 29^{29}Si NMR study of the quasi-2D coupled spin 1/2 dimer compound BaCuSi2_2O6_6 in the magnetic field range 13-26 T and at temperatures as low as 50 mK. NMR data in the gapped phase reveal that below 90 K different intra-dimer exchange couplings and different gaps (ΔB/ΔA\Delta_{\rm{B}}/\Delta_{\rm{A}} = 1.16) exist in every second plane along the c-axis, in addition to a planar incommensurate (IC) modulation. 29^{29}Si spectra in the field induced magnetic ordered phase reveal that close to the quantum critical point at Hc1H_{\rm{c1}} = 23.35 T the average boson density nˉ\bar{n} of the Bose-Einstein condensate is strongly modulated along the c-axis with a density ratio for every second plane nˉA/nˉB5\bar{n}_{\rm{A}}/\bar{n}_{\rm{B}} \simeq 5. An IC modulation of the local density is also present in each plane. This adds new constraints for the understanding of the 2D value ϕ\phi = 1 of the critical exponent describing the phase boundary

    Extragalactic H3O+: Some Consequences

    Full text link
    We discuss some implications of our recent detection of extragalactic H3O+: the location of the gas in M82, the origin of energetic radiation in M82, and the possible feedback effects of star formation on the cosmic ray flux in galaxies.Comment: Five pages, one figure; contribution to proceedings of conference "Far-infrared observations of the interstellar medium", December 2007, Bad Honne

    Revivals of quantum wave-packets in graphene

    Full text link
    We investigate the propagation of wave-packets on graphene in a perpendicular magnetic field and the appearance of collapses and revivals in the time-evolution of an initially localised wave-packet. The wave-packet evolution in graphene differs drastically from the one in an electron gas and shows a rich revival structure similar to the dynamics of highly excited Rydberg states. We present a novel numerical wave-packet propagation scheme in order to solve the effective single-particle Dirac-Hamiltonian of graphene and show how the collapse and revival dynamics is affected by the presence of disorder. Our effective numerical method is of general interest for the solution of the Dirac equation in the presence of potentials and magnetic fields.Comment: 22 pages, 10 figures, 3 movies, to appear in New Journal of Physic

    Electron propagation in crossed magnetic and electric fields

    Full text link
    Laser-atom interaction can be an efficient mechanism for the production of coherent electrons. We analyze the dynamics of monoenergetic electrons in the presence of uniform, perpendicular magnetic and electric fields. The Green function technique is used to derive analytic results for the field--induced quantum mechanical drift motion of i) single electrons and ii) a dilute Fermi gas of electrons. The method yields the drift current and, at the same time it allows us to quantitatively establish the broadening of the (magnetic) Landau levels due to the electric field: Level number k is split into k+1 sublevels that render the kkth oscillator eigenstate in energy space. Adjacent Landau levels will overlap if the electric field exceeds a critical strength. Our observations are relevant for quantum Hall configurations whenever electric field effects should be taken into account.Comment: 11 pages, 2 figures, submitte

    Optimization of radio astronomical observations using Allan variance measurements

    Full text link
    Stability tests based on the Allan variance method have become a standard procedure for the evaluation of the quality of radio-astronomical instrumentation. They are very simple and simulate the situation when detecting weak signals buried in large noise fluctuations. For the special conditions during observations an outline of the basic properties of the Allan variance is given, and some guidelines how to interpret the results of the measurements are presented. Based on a rather simple mathematical treatment clear rules for observations in ``Position-Switch'', ``Beam-'' or ``Frequency-Switch'', ``On-The-Fly-'' and ``Raster-Mapping'' mode are derived. Also, a simple ``rule of the thumb'' for an estimate of the optimum timing for the observations is found. The analysis leads to a conclusive strategy how to plan radio-astronomical observations. Particularly for air- and space-borne observatories it is very important to determine, how the extremely precious observing time can be used with maximum efficiency. The analysis should help to increase the scientific yield in such cases significantly.Comment: 11 pages, 7 figures, Latex, to be published in Astronomy & Astrophysic

    Shock-resolved Navier–Stokes simulation of the Richtmyer–Meshkov instability start-up at a light–heavy interface

    Get PDF
    The single-mode Richtmyer–Meshkov instability is investigated using a first-order perturbation of the two-dimensional Navier–Stokes equations about a one-dimensional unsteady shock-resolved base flow. A feature-tracking local refinement scheme is used to fully resolve the viscous internal structure of the shock. This method captures perturbations on the shocks and their influence on the interface growth throughout the simulation, to accurately examine the start-up and early linear growth phases of the instability. Results are compared to analytic models of the instability, showing some agreement with predicted asymptotic growth rates towards the inviscid limit, but significant discrepancies are noted in the transient growth phase. Viscous effects are found to be inadequately predicted by existing models
    corecore