6,506 research outputs found
More on coupling coefficients for the most degenerate representations of SO(n)
We present explicit closed-form expressions for the general group-theoretical
factor appearing in the alpha-topology of a high-temperature expansion of
SO(n)-symmetric lattice models. This object, which is closely related to
6j-symbols for the most degenerate representation of SO(n), is discussed in
detail.Comment: 9 pages including 1 table, uses IOP macros Update of Introduction and
Discussion, References adde
Ad- and desorption of Rb atoms on a gold nanofilm measured by surface plasmon polaritons
Hybrid quantum systems made of cold atoms near nanostructured surfaces are
expected to open up new opportunities for the construction of quantum sensors
and for quantum information. For the design of such tailored quantum systems
the interaction of alkali atoms with dielectric and metallic surfaces is
crucial and required to be understood in detail. Here, we present real-time
measurements of the adsorption and desorption of Rubidium atoms on gold
nanofilms. Surface plasmon polaritons (SPP) are excited at the gold surface and
detected in a phase sensitive way. From the temporal change of the SPP phase
the Rubidium coverage of the gold film is deduced with a sensitivity of better
than 0.3 % of a monolayer. By comparing the experimental data with a Langmuir
type adsorption model we obtain the thermal desorption rate and the sticking
probability. In addition, also laser-induced desorption is observed and
quantified.Comment: 9 pages, 6 figure
Scattering and absorption of ultracold atoms by nanotubes
We investigate theoretically how cold atoms, including Bose-Einstein
condensates, are scattered from, or absorbed by nanotubes with a view to
analysing recent experiments. In particular we consider the role of potential
strength, quantum reflection, atomic interactions and tube vibrations on atom
loss rates. Lifshitz theory calculations deliver a significantly stronger
scattering potential than that found in experiment and we discuss possible
reasons for this. We find that the scattering potential for dielectric tubes
can be calculated to a good approximation using a modified pairwise summation
approach, which is efficient and easily extendable to arbitrary geometries.
Quantum reflection of atoms from a nanotube may become a significant factor at
low temperatures, especially for non-metallic tubes. Interatomic interactions
are shown to increase the rate at which atoms are lost to the nanotube and lead
to non-trivial dynamics. Thermal nanotube vibrations do not significantly
increase loss rates or reduce condensate fractions, but lower frequency
oscillations can dramatically heat the cloud.Comment: 7 pages, 4 figure
The Sensitivity of First Generation Epoch of Reionization Observatories and Their Potential for Differentiating Theoretical Power Spectra
Statistical observations of the epoch of reionization (EOR) power spectrum
provide a rich data set for understanding the transition from the cosmic "dark
ages" to the ionized universe we see today. EOR observations have become an
active area of experimental cosmology, and three first generation
observatories--MWA, PAST, and LOFAR--are currently under development. In this
paper we provide the first quantitative calculation of the three dimensional
power spectrum sensitivity, incorporating the design parameters of a planned
array. This calculation is then used to explore the constraints these first
generation observations can place on the EOR power spectrum. The results
demonstrate the potential of upcoming power spectrum observations to constrain
theories of structure formation and reionization.Comment: 7 pages with 5 figures. Submitted to Ap
Cold atoms near superconductors: Atomic spin coherence beyond the Johnson noise limit
We report on the measurement of atomic spin coherence near the surface of a
superconducting niobium wire. As compared to normal conducting metal surfaces,
the atomic spin coherence is maintained for time periods beyond the Johnson
noise limit. The result provides experimental evidence that magnetic near field
noise near the superconductor is strongly suppressed. Such long atomic spin
coherence times near superconductors open the way towards the development of
coherently coupled cold atom / solid state hybrid quantum systems with
potential applications in quantum information processing and precision force
sensing.Comment: Major revisions of the text for submission to New Journal of Physics
8 pages, 4 figure
Addition theorems for spin spherical harmonics. II Results
Based on the results of part I, we obtain the general form of the addition
theorem for spin spherical harmonics and give explicit results in the cases
involving one spin- and one spin- spherical harmonics with ,
1, 3/2, and , 1. We obtain also a fully general addition theorem for
one scalar and one tensor spherical harmonic of arbitrary rank. A variety of
bilocal sums of ordinary and spin spherical harmonics are given in explicit
form, including a general explicit expression for bilocal spherical harmonics
Use of Archive Aerial Photography for Monitoring Black Mangrove Populations
A study was conducted on the South Texas Gulf Coast to evaluate archive aerial color-infrared (CIR) photography combined with supervised image analysis techniques to quantify changes in black mangrove [Avicennia germinans (L.) L.] populations over a 26-year period. Archive CIR film from two study sites (sites 1 and 2) was studied. Photographs of site 1 from 1976,1988, and 2002 showed that black mangrove populations made up 16.2%, 21.1%, and 29.4% of the study site, respectively. Photographs of site 2 from 1976 and 2002 showed that black mangrove populations made up 0.4% and 2.7% of the study site, respectively. Over the 26-year period, black mangrove had increases in cover of 77% and 467% on sites 1 and 2, respectively. These results indicate that aerial photographs coupled with image analysis techniques can be useful tools to monitor and quantify black mangrove populations over time
Hubbard U and Hund's Exchange J in Transition Metal Oxides: Screening vs. Localization Trends from Constrained Random Phase Approximation
In this work, we address the question of calculating the local effective
Coulomb interaction matrix in materials with strong electronic Coulomb
interactions from first principles. To this purpose, we implement the
constrained random phase approximation (cRPA) into a density functional code
within the linearized augmented plane wave (LAPW) framework.
We apply our approach to the 3d and 4d early transition metal oxides SrMO3
(M=V, Cr, Mn) and (M=Nb, Mo, Tc) in their paramagnetic phases. For these
systems, we explicitly assess the differences between two physically motivated
low-energy Hamiltonians: The first is the three-orbital model comprising the
t2g states only, that is often used for early transition metal oxides. The
second choice is a model where both, metal d- and oxygen p-states are retained
in the construction of Wannier functions, but the Hubbard interactions are
applied to the d-states only ("d-dp Hamiltonian"). Interestingly, since -- for
a given compound -- both U and J depend on the choice of the model, so do their
trends within a family of these compounds. In the 3d perovskite series SrMO3
the effective Coulomb interactions in the t2g Hamiltonian decrease along the
series, due to the more efficient screening. The inverse -- generally expected
-- trend, increasing interactions with increasing atomic number, is however
recovered within the more localized "d-dp Hamiltonian". Similar conclusions are
established in the layered 4d perovskites series Sr2MO4 (M=Mo, Tc, Ru, Rh).
Compared to their isoelectronic and isostructural 3d analogues, the 4d 113
perovskite oxides SrMO3 (M=Nb, Mo, Tc) exhibit weaker screening effects.
Interestingly, this leads to an effectively larger U on 4d shells than on 3d
when a t2g model is constructed.Comment: 21 pages, 7 figure
Analytic Treatment of Positronium Spin Splittings in Light-Front QED
We study the QED bound-state problem in a light-front hamiltonian approach.
Starting with a bare cutoff QED Hamiltonian, , with matrix elements
between free states of drastically different energies removed, we perform a
similarity transformation that removes the matrix elements between free states
with energy differences between the bare cutoff, , and effective
cutoff, \lam (\lam < \Lam). This generates effective interactions in the
renormalized Hamiltonian, . These effective interactions are derived
to order in this work, with . is renormalized
by requiring it to satisfy coupling coherence. A nonrelativistic limit of the
theory is taken, and the resulting Hamiltonian is studied using bound-state
perturbation theory (BSPT). The effective cutoff, \lam^2, is fixed, and the
limit, 0 \longleftarrow m^2 \alpha^2\ll \lam^2 \ll m^2 \alpha \longrightarrow
\infty, is taken. This upper bound on \lam^2 places the effects of
low-energy (energy transfer below \lam) emission in the effective
interactions in the sector. This lower bound on \lam^2
insures that the nonperturbative scale of interest is not removed by the
similarity transformation. As an explicit example of the general formalism
introduced, we show that the Hamiltonian renormalized to reproduces
the exact spectrum of spin splittings, with degeneracies dictated by rotational
symmetry, for the ground state through . The entire calculation is
performed analytically, and gives the well known singlet-triplet ground state
spin splitting of positronium, . We discuss remaining
corrections other than the spin splittings and how they can be treated in
calculating the spectrum with higher precision.Comment: 46 pages, latex, 3 Postscript figures included, section on remaining
corrections added, title changed, error in older version corrected, cutoff
placed in a windo
- …