345 research outputs found
Evidence against a glass transition in the 10-state short range Potts glass
We present the results of Monte Carlo simulations of two different 10-state
Potts glasses with random nearest neighbor interactions on a simple cubic
lattice. In the first model the interactions come from a \pm J distribution and
in the second model from a Gaussian one, and in both cases the first two
moments of the distribution are chosen to be equal to J_0=-1 and Delta J=1. At
low temperatures the spin autocorrelation function for the \pm J model relaxes
in several steps whereas the one for the Gaussian model shows only one. In both
systems the relaxation time increases like an Arrhenius law. Unlike the
infinite range model, there are only very weak finite size effects and there is
no evidence that a dynamical or a static transition exists at a finite
temperature.Comment: 9 pages of Latex, 4 figure
Finite-size scaling at the dynamical transition of the mean-field 10-state Potts glass
We use Monte Carlo simulations to study the static and dynamical properties
of a Potts glass with infinite range Gaussian distributed exchange interactions
for a broad range of temperature and system size up to N=2560 spins. The
results are compatible with a critical divergence of the relaxation time tau at
the theoretically predicted dynamical transition temperature T_D, tau \propto
(T-T_D)^{-\Delta} with Delta \approx 2. For finite N a further power law at
T=T_D is found, tau(T=T_D) \propto N^{z^\star} with z^\star \approx 1.5 and for
T>T_D dynamical finite-size scaling seems to hold. The order parameter
distribution P(q) is qualitatively compatible with the scenario of a first
order glass transition as predicted from one-step replica symmetry breaking
schemes.Comment: 8 pages of Latex, 4 figure
Synthesis of Potential Anti-Cancer Agents. XVII. Urea Nitrogen Mustards
The synthesis of nitrogen mustard ur eas from various isocyamates
and the free base of NN-bis-(2-chloroe thyla mine) is
described. Prelimina ry pharmacological tests show that so m e of
these compounds have a cytostatic activity
Contact transmission of influenza virus between ferrets imposes a looser bottleneck than respiratory droplet transmission allowing propagation of antiviral resistance
Influenza viruses cause annual seasonal epidemics and occasional pandemics. It is important to elucidate the stringency of bottlenecks during transmission to shed light on mechanisms that underlie the evolution and propagation of antigenic drift, host range switching or drug resistance. The virus spreads between people by different routes, including through the air in droplets and aerosols, and by direct contact. By housing ferrets under different conditions, it is possible to mimic various routes of transmission. Here, we inoculated donor animals with a mixture of two viruses whose genomes differed by one or two reverse engineered synonymous mutations, and measured the transmission of the mixture to exposed sentinel animals. Transmission through the air imposed a tight bottleneck since most recipient animals became infected by only one virus. In contrast, a direct contact transmission chain propagated a mixture of viruses suggesting the dose transferred by this route was higher. From animals with a mixed infection of viruses that were resistant and sensitive to the antiviral drug oseltamivir, resistance was propagated through contact transmission but not by air. These data imply that transmission events with a looser bottleneck can propagate minority variants and may be an important route for influenza evolution
The Functional Study of the N-Terminal Region of Influenza B Virus Nucleoprotein
Influenza nucleoprotein (NP) is a major component of the ribonucleoprotein (vRNP) in influenza virus, which functions for the transcription and replication of viral genome. Compared to the nucleoprotein of influenza A (ANP), the N-terminal region of influenza B nucleoprotein (BNP) is much extended. By virus reconstitution, we found that the first 38 residues are essential for viral growth. We further illustrated the function of BNP by mini-genome reconstitution, fluorescence microscopy, electron microscopy, light scattering and gel shift. Results show that the N terminus is involved in the formation of both higher homo-oligomers of BNP and BNP-RNA complex
Synthesis of Potential Anti-Cancer Agents. XVI. Nitrogen Mustards from 1-Aminophenazine and 8-Aminoquinoline
The synthesis of nitrogen mustard amides from 1-aminophenazine
and 8-aminoquinoline is described
Critical Behavior of Three-Dimensional Disordered Potts Models with Many States
We study the 3D Disordered Potts Model with p=5 and p=6. Our numerical
simulations (that severely slow down for increasing p) detect a very clear spin
glass phase transition. We evaluate the critical exponents and the critical
value of the temperature, and we use known results at lower values to
discuss how they evolve for increasing p. We do not find any sign of the
presence of a transition to a ferromagnetic regime.Comment: 9 pages and 9 Postscript figures. Final version published in J. Stat.
Mec
How the Replica-Symmetry-Breaking Transition Looks Like in Finite-Size Simulations
Finite-size effects in the mean-field Ising spin glass and the mean-field
three-state Potts glass are investigated by Monte Carlo simulations. In the
thermodynamic limit, each model is known to exhibit a continuous phase
transition into the ordered state with a full and a one-step replica-symmetry
breaking (RSB), respectively. In the Ising case, Binder parameter g calculated
for various finite sizes remains positive at any temperature and crosses at the
transition point, while in the Potts case g develops a negative dip without
showing a crossing in the g>0 region. By contrast, non-self averaging
parameters always remain positive and show a clear crossing at the transition
temperature in both cases. Our finding suggests that care should be taken in
interpreting the numerical data of the Binder parameter, particularly when the
system exhibits a one-step-like RSB.Comment: 7 pages, 8 figure
- …