25,670 research outputs found

    Improved Pseudofermion Approach for All-Point Propagators

    Get PDF
    Quark propagators with arbitrary sources and sinks can be obtained more efficiently using a pseudofermion method with a mode-shifted action. Mode-shifting solves the problem of critical slowing down (for light quarks) induced by low eigenmodes of the Dirac operator. The method allows the full physical content of every gauge configuration to be extracted, and should be especially helpful for unquenched QCD calculations. The method can be applied for all the conventional quark actions: Wilson, Sheikoleslami-Wohlert, Kogut-Susskind, as well as Ginsparg-Wilson compliant overlap actions. The statistical properties of the method are examined and examples of physical processes under study are presented.Comment: LateX, 26 pages, 10 eps figure

    Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon

    Get PDF
    A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material

    Silicon ribbon study program

    Get PDF
    The feasibility is studied of growing wide, thin silicon dendritic web for solar cell fabrication and conceptual designs are developed for the apparatus required. An analysis of the mechanisms of dendritic web growth indicated that there were no apparent fundamental limitations to the process. The analysis yielded quantitative guidelines for the thermal conditions required for this mode of crystal growth. Crucible designs were then investigated: the usual quartz crucible configurations and configurations in which silicon itself is used for the crucible. The quartz crucible design is feasible and is incorporated into a conceptual design for a laboratory scale crystal growth facility capable of semi-automated quasi-continuous operation
    corecore