1,371 research outputs found

    Information transfer in complex systems, with applications to regulation Interim scientific report

    Get PDF
    Information theory and relevance to study of complex system

    Reclaiming human machine nature

    Get PDF
    Extending and modifying his domain of life by artifact production is one of the main characteristics of humankind. From the first hominid, who used a wood stick or a stone for extending his upper limbs and augmenting his gesture strength, to current systems engineers who used technologies for augmenting human cognition, perception and action, extending human body capabilities remains a big issue. From more than fifty years cybernetics, computer and cognitive sciences have imposed only one reductionist model of human machine systems: cognitive systems. Inspired by philosophy, behaviorist psychology and the information treatment metaphor, the cognitive system paradigm requires a function view and a functional analysis in human systems design process. According that design approach, human have been reduced to his metaphysical and functional properties in a new dualism. Human body requirements have been left to physical ergonomics or "physiology". With multidisciplinary convergence, the issues of "human-machine" systems and "human artifacts" evolve. The loss of biological and social boundaries between human organisms and interactive and informational physical artifact questions the current engineering methods and ergonomic design of cognitive systems. New developpment of human machine systems for intensive care, human space activities or bio-engineering sytems requires grounding human systems design on a renewed epistemological framework for future human systems model and evidence based "bio-engineering". In that context, reclaiming human factors, augmented human and human machine nature is a necessityComment: Published in HCI International 2014, Heraklion : Greece (2014

    N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil.

    Get PDF
    Among the main greenhouse gases (CO2, CH4 and N2O), N2O has the highest global warming potential. N2O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N2O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (São Paulo state) and Goianésia (Goiås state). In Piracicaba, N2O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha-1 of N. From there on, emissions nexponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianésia, N2O emissions nwere lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha-1. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N2O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies

    A super-analogue of Kontsevich's theorem on graph homology

    Full text link
    In this paper we will prove a super-analogue of a well-known result by Kontsevich which states that the homology of a certain complex which is generated by isomorphism classes of oriented graphs can be calculated as the Lie algebra homology of an infinite-dimensional Lie algebra of symplectic vector fields.Comment: 15 page

    Aerosol–cloud drop concentration closure in warm cumulus

    Get PDF
    Our understanding of the activation of aerosol particles into cloud drops during the formation of warm cumulus clouds presently has a limited observational foundation. Detailed observations of aerosol size and composition, cloud microphysics and dynamics, and atmospheric thermodynamic state were collected in a systematic study of 21 cumulus clouds by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft during NASA's Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE). An “aerosol-cloud” closure study was carried out in which a detailed cloud activation parcel model, which predicts cloud drop concentration using observed aerosol concentration, size distribution, cloud updraft velocity, and thermodynamic state, is evaluated against observations. On average, measured droplet concentration in adiabatic cloud regions is within 15% of the predictions. This agreement is corroborated by independent measurements of aerosol activation carried out by two cloud condensation nucleus (CCN) counters on the aircraft. Variations in aerosol concentration, which ranged from 300 to 3300 cm^(−3), drives large microphysical differences (250–2300 cm^(−3)) observed among continental and maritime clouds in the South Florida region. This is the first known study in which a cloud parcel model is evaluated in a closure study using a constraining set of data collected from a single platform. Likewise, this is the first known study in which relationships among aerosol size distribution, CCN spectrum, and cloud droplet concentration are all found to be consistent with theory within experimental uncertainties much less than 50%. Vertical profiles of cloud microphysical properties (effective radius, droplet concentration, dispersion) clearly demonstrate the boundary layer aerosol's effect on cloud microphysics throughout the lowest 1 km of cloud depth. Onboard measurements of aerosol hygroscopic growth and the organic to sulfate mass ratio are related to CCN properties. These chemical data are used to quantify the range of uncertainty associated with the simplified treatment of aerosol composition assumed in the closure study

    Evaluation of an entraining droplet activation parameterization using in situ cloud data

    Get PDF
    This study investigates the ability of a droplet activation parameterization (which considers the effects of entrainment and mixing) to reproduce observed cloud droplet number concentration (CDNC) in ambient clouds. Predictions of the parameterization are compared against cloud averages of CDNC from ambient cumulus and stratocumulus clouds sampled during CRYSTAL‐FACE (Key West, Florida, July 2002) and CSTRIPE (Monterey, California, July 2003), respectively. The entrainment parameters required by the parameterization are derived from the observed liquid water content profiles. For the cumulus clouds considered in the study, CDNC is overpredicted by 45% with the adiabatic parameterization. When entrainment is accounted for, the predicted CDNC agrees within 3.5%. Cloud‐averaged CDNC for stratocumulus clouds is well captured when entrainment is not considered. In all cases considered, the entraining parameterization compared favorably against a statistical correlation developed from observations to treat entrainment effects on droplet number. These results suggest that including entrainment effects in the calculation of CDNC, as presented here, could address important overprediction biases associated with using adiabatic CDNC to represent cloud‐scale average values

    'Sexercise': Working out heterosexuality in Jane Fonda’s fitness books

    Get PDF
    This is an Author's Accepted Manuscript of an article published in Leisure Studies, 30(2), 237 - 255, 2011, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/02614367.2010.523837.This paper explores the connection between the promotion of heterosexual norms in women’s fitness books written by or in the name of Jane Fonda during the 1980s and the commodification of women’s fitness space in both the public and private spheres. The paper is set in the absence of overt discussions of normative heterosexuality in leisure studies and draws on critical heterosexual scholarship as well as the growing body of work theorising geographies of corporeality and heterosexuality. Using the principles of media discourse analysis, the paper identifies three overlapping characteristics of heterosexuality represented in Jane Fonda’s fitness books, and embodied through the exercise regimes: respectable heterosexual desire, monogamous procreation and domesticity. The paper concludes that the promotion and prescription of exercise for women in the Jane Fonda workout books centred on the reproduction and embodiment of heterosexual corporeality. Set within an emerging commercial landscape of women’s fitness in the 1980s, such exercise practices were significant in the legitimation and institutionalisation of heteronormativity

    Genotyping Validates the Efficacy of Photographic Identification in a Capture-Mark-Recapture Study Based on the Head Scale Patterns of the Prairie Lizard (\u3ci\u3eSceloporus consobrinus\u3c/i\u3e)

    Get PDF
    Population studies often incorporate capture‐mark‐recapture (CMR) techniques to gather information on long‐term biological and demographic characteristics. A fundamental requirement for CMR studies is that an individual must be uniquely and permanently marked to ensure reliable reidentification throughout its lifespan. Photographic identification involving automated photographic identification software has become a popular and efficient noninvasive method for identifying individuals based on natural markings. However, few studies have (a) robustly assessed the performance of automated programs by using a double‐marking system or (b) determined their efficacy for long‐term studies by incorporating multi‐year data. Here, we evaluated the performance of the program Interactive Individual Identification System (I3S) by cross‐validating photographic identifications based on the head scale pattern of the prairie lizard (Sceloporus consobrinus) with individual microsatellite genotyping (N = 863). Further, we assessed the efficacy of the program to identify individuals over time by comparing error rates between within‐year and between‐year recaptures. Recaptured lizards were correctly identified by I3S in 94.1% of cases. We estimated a false rejection rate (FRR) of 5.9% and a false acceptance rate (FAR) of 0%. By using I3S, we correctly identified 97.8% of within‐year recaptures (FRR = 2.2%; FAR = 0%) and 91.1% of between‐year recaptures (FRR = 8.9%; FAR = 0%). Misidentifications were primarily due to poor photograph quality (N = 4). However, two misidentifications were caused by indistinct scale configuration due to scale damage (N = 1) and ontogenetic changes in head scalation between capture events (N = 1). We conclude that automated photographic identification based on head scale patterns is a reliable and accurate method for identifying individuals over time. Because many lizard or reptilian species possess variable head squamation, this method has potential for successful application in many species
    • 

    corecore