6,724 research outputs found
A study of the intensity of the self-broadened fundamental band of hydrogen chloride
Intensity study of self-broadened fundamental band of hydrogen chlorid
Stability of spherically symmetric solutions in modified theories of gravity
In recent years, a number of alternative theories of gravity have been
proposed as possible resolutions of certain cosmological problems or as toy
models for possible but heretofore unobserved effects. However, the
implications of such theories for the stability of structures such as stars
have not been fully investigated. We use our "generalized variational
principle", described in a previous work, to analyze the stability of static
spherically symmetric solutions to spherically symmetric perturbations in three
such alternative theories: Carroll et al.'s f(R) gravity, Jacobson &
Mattingly's "Einstein-aether theory", and Bekenstein's TeVeS. We find that in
the presence of matter, f(R) gravity is highly unstable; that the stability
conditions for spherically symmetric curved vacuum Einstein-aether backgrounds
are the same as those for linearized stability about flat spacetime, with one
exceptional case; and that the "kinetic terms" of vacuum TeVeS are indefinite
in a curved background, leading to an instability.Comment: ReVTex; 20 pages, 3 figures. v2: references added, submitted to PRD;
v3: expanded discussion of TeVeS; v4: minor typos corrected (version to
appear in PRD
Burnett-Weaver Debate Volume Two: Operation of the Holy Spirit, Design of Baptism, The Creed Criticised
https://digitalcommons.acu.edu/crs_books/1259/thumbnail.jp
Evaluation of diffusive gradients in thin-films using a Diphonix® resin for monitoring dissolved uranium in natural waters
Commercially available Diphonix® resin (TrisKem International) was evaluated as a receiving phase for use with the diffusive gradients in thin-films (DGT) passive sampler for measuring uranium. This resin has a high partition coefficient for actinides and is used in the nuclear industry. Other resins used as receiving phases with DGT for measuring uranium have been prone to saturation and significant chemical interferences. The performance of the device was evaluated in the laboratory and in field trials. In laboratory experiments uptake of uranium (all 100% efficiency) by the resin was unaffected by varying pH (4–9), ionic strength (0.01–1.00 M, as NaNO3) and varying aqueous concentrations of Ca2+ (100–500 mg L−1) and HCO3− (100–500 mg L−1). Due to the high partition coefficient of Diphonex®, several elution techniques for uranium were evaluated. The optimal eluent mixture was 1 M NaOH/1 M H2O2, eluting 90% of the uranium from the resin. Uptake of uranium was linear (R2 = 0.99) over time (5 days) in laboratory experiments using artificial freshwater showing no saturation effects of the resin. In field deployments (River Lambourn, UK) the devices quantitatively accumulated uranium for up to 7 days. In both studies uptake of uranium matched that theoretically predicted for the DGT. Similar experiments in seawater did not follow the DGT theoretical uptake and the Diphonix® appeared to be capacity limited and also affected by matrix interferences. Isotopes of uranium (U235/U238) were measured in both environments with a precision and accuracy of 1.6–2.2% and 1.2–1.4%, respectively. This initial study shows the potential of using Diphonix®-DGT for monitoring of uranium in the aquatic environment
Simultaneous dual-element analyses of refractory metals in naturally occurring matrices using resonance ionization of sputtered atoms
The combination of secondary neutral mass spectrometry (SNMS) and resonance ionization spectroscopy (RIS) has been shown to be a powerful tool for the detection of low levels of elemental impurities in solids. Drawbacks of the technique have been the laser-repetition-rate-limited, low duty cycle of the analysis and the fact that RIS schemes are limited to determinations of a single element. These problems have been addressed as part of an ongoing program to explore the usefulness of RIS/SNMS instruments for the analysis of naturally occurring samples. Efficient two-color, two-photon (1+1) resonance ionization schemes were identified for Mo and for four platinum-group elements (Ru, Os, Ir, and Re). Careful selection of the ionization schemes allowed Mo or Ru to be measured simultaneously with Re, Os, or Ir, using two tunable dye lasers and an XeCl excimer laser. Resonance frequencies could be switched easily under computer control, so that all five elements can be rapidly analyzed. In situ measurements of these elements in metal grains from five meteorites were conducted. From the analyses, estimates of the precision and the detection limit of the instrument were made. The trade-off between lower detection limits and rapid multielement RIS analyses is discussed
A general variational principle for spherically symmetric perturbations in diffeomorphism covariant theories
We present a general method for the analysis of the stability of static,
spherically symmetric solutions to spherically symmetric perturbations in an
arbitrary diffeomorphism covariant Lagrangian field theory. Our method involves
fixing the gauge and solving the linearized gravitational field equations to
eliminate the metric perturbation variable in terms of the matter variables. In
a wide class of cases--which include f(R) gravity, the Einstein-aether theory
of Jacobson and Mattingly, and Bekenstein's TeVeS theory--the remaining
perturbation equations for the matter fields are second order in time. We show
how the symplectic current arising from the original Lagrangian gives rise to a
symmetric bilinear form on the variables of the reduced theory. If this
bilinear form is positive definite, it provides an inner product that puts the
equations of motion of the reduced theory into a self-adjoint form. A
variational principle can then be written down immediately, from which
stability can be tested readily. We illustrate our method in the case of
Einstein's equation with perfect fluid matter, thereby re-deriving, in a
systematic manner, Chandrasekhar's variational principle for radial
oscillations of spherically symmetric stars. In a subsequent paper, we will
apply our analysis to f(R) gravity, the Einstein-aether theory, and
Bekenstein's TeVeS theory.Comment: 13 pages; submitted to Phys. Rev. D. v2: changed formatting, added
conclusion, corrected sign convention
Coagulation kinetics beyond mean field theory using an optimised Poisson representation
Binary particle coagulation can be modelled as the repeated random process of
the combination of two particles to form a third. The kinetics can be
represented by population rate equations based on a mean field assumption,
according to which the rate of aggregation is taken to be proportional to the
product of the mean populations of the two participants. This can be a poor
approximation when the mean populations are small. However, using the Poisson
representation it is possible to derive a set of rate equations that go beyond
mean field theory, describing pseudo-populations that are continuous, noisy and
complex, but where averaging over the noise and initial conditions gives the
mean of the physical population. Such an approach is explored for the simple
case of a size-independent rate of coagulation between particles. Analytical
results are compared with numerical computations and with results derived by
other means. In the numerical work we encounter instabilities that can be
eliminated using a suitable 'gauge' transformation of the problem [P. D.
Drummond, Eur. Phys. J. B38, 617 (2004)] which we show to be equivalent to the
application of the Cameron-Martin-Girsanov formula describing a shift in a
probability measure. The cost of such a procedure is to introduce additional
statistical noise into the numerical results, but we identify an optimised
gauge transformation where this difficulty is minimal for the main properties
of interest. For more complicated systems, such an approach is likely to be
computationally cheaper than Monte Carlo simulation
The solar oxygen-isotopic composition: Predictions and implications for solar nebula processes
The outer layers of the Sun are thought to preserve the average isotopic and chemical composition of the solar system. The solar O-isotopic composition is essentially unmeasured, though models based on variations in meteoritic materials yield several predictions. These predictions are reviewed and possible variations on these predictions are explored. In particular, the two-component mixing model of Clayton and Mayeda (1984) (slightly revised here) predicts solar compositions to lie along an extension of the calcium-aluminum-rich inclusion (CAI) ^(16)O line between (δ^(18)O, δ^(17)O) = (16.4, 11.4)%0 and (12.3, 7.5)%0. Consideration of data from ordinary chondrites suggests that the range of predicted solar composition should extend to slightly lower δ^(18)O values. The predicted solar composition is critically sensitive to the solid/gas ratio in the meteorite-forming region, which is often considered to be significantly enriched over solar composition. A factor of two solid/gas enrichment raises the predicted solar (δ^(18)O, δ^(17)O) values along an extension of the CAI ^(16)O line to (33, 28)%0. The model is also sensitive to the nebular O gas phase. If conversion of most of the gaseous O from CO to H_2O occurred at relatively low temperatures and was incomplete at the time of CM aqueous alteration, the predicted nebular gas composition (and hence the solar composition) would be isotopically heavier along a slope 1/2 line. The likelihood of having a single solid nebular O component is discussed. A distribution of initial solid compositions along the CAI ^(16)O line (rather than simply as an end-member) would not significantly change the predictions above in at least one scenario. Even considering these variations within the mixing model, the predicted range of solar compositions is distinct from that expected if the meteoritic variations are due to non-mass-dependent fractionation. Thus, a measurement of the solar O composition to a precision of several permil would clearly distinguish between these theories and should clarify a number of other important issues regarding solar system formation
- …