107 research outputs found

    The impact of experimental impact pile driving on oxygen uptake in black seabream and plaice

    Get PDF
    This is the final version of the article. Available from Acoustical Society of America via the DOI in this record.Fourth International Conference on the Effects of Noise on Aquatic Life, Dublin, Ireland, 10-16 July 2016Anthropogenic noise is a recognized global pollutant that could potentially impact many organisms, including fishes. One of the acoustic sources producing high impulsive noise and vibration is pile driving. However, the potential impacts of real pile driving on fish species has received little attention, mainly due to the logistical challenges involved. Here, we investigated the impact of pile driving on the oxygen uptake (a secondary stress response) of black seabream Spondyliosoma cantharus and European plaice Pleuronectes platessa using an experimental pile driver setup in a flooded ship-building dock. Each individual fish was tested in ambient and pile driving conditions using a counterbalanced paired design to control for potential order effects. During pile driving, black seabream increased oxygen uptake compared to the ambient control condition suggesting higher stress levels. Plaice did not show differences in oxygen consumption between the pile driving and ambient treatment. These results show the impact of pile driving on secondary stress responses in fish, highlight species-specific differences concerning acoustical impacts, and showcase the possibility of carrying out large-scale semi-field acoustic experiments.Thanks also to E.ON, NERC MREKE and Marine Scotland for financial support

    Rapid recovery following short-term acoustic disturbance in two fish species

    Get PDF
    ArticleNoise from human activities is known to impact organisms in a variety of taxa, but most experimental studies on the behavioural effects of noise have focused on examining responses associated with the period of actual exposure. Unlike most pollutants, acoustic noise is generally short-lived, usually dissipating quickly after the source is turned off or leaves the area. In a series of experiments, we use established experimental paradigms to examine how fish behaviour and physiology are affected, both during short-term (2 min) exposure to playback of recordings of anthropogenic noise sources and in the immediate aftermath of noise exposure. We considered the anti-predator response and ventilation rate of juvenile European eels (Anguilla anguilla), and ventilation rate of juvenile European seabass (Dicentrarchus labrax). As previously found, additional-noise exposure decreased eel anti-predator responses, increased startle latency and increased ventilation rate relative to ambient-noise-exposed controls. Our results show for the first time that those effects quickly dissipated; eels showed rapid recovery of startle responses and startle latency, and rapid albeit incomplete recovery of ventilation rate in the 2 min after noise cessation. Seabass in both laboratory and open-water conditions showed an increased ventilation rate during playback of additional noise compared to ambient conditions. However, within 2 min of noise cessation, ventilation rate showed complete recovery to levels equivalent to ambient-exposed control individuals. Care should be taken in generalizing these rapid-recovery results, as individuals might have accrued other costs during noise exposure and other species might show different recovery times. Nonetheless, our results from two different fish species provide tentative cause for optimism concerning recovery following short-duration noise exposure, and suggest that considering periods following noise exposures could be important for mitigation and management decisions.DefraNER

    Exposure of benthic invertebrates to sediment vibration: From laboratory experiments to outdoor simulated pile-driving

    Get PDF
    This is the final version of the article. Available from Acoustical Society of America via the DOI in this record.Fourth International Conference on the Effects of Noise on Aquatic Life, Dublin, Ireland, 10-16 July 2016Activities directly interacting with the seabed, such as pile-driving, can produce vibrations that have the potential to impact benthic invertebrates within their vicinity. This stimuli may interfere with crucial behaviors such as foraging and predator avoidance, and the sensitivity to vibration is largely unknown. Here, the responsiveness of benthic invertebrates to sediment vibration is discussed in relation to laboratory and semi-field trials with two marine species: the mussel (Mytilus edulis) and hermit crab (Pagurus bernhardus). Sensory threshold curves were produced for both species in controlled laboratory conditions, followed by small-scale pile-driving exposures in the field. The merits of behavioral indicators are discussed, in addition to using physiological measures, as a method of determining reception and measuring responses. The measurement and sensors required for sediment vibration quantification are also discussed. Response and threshold data were related to measurements taken in the vicinity of anthropogenic sources, allowing a link between responsiveness and actual operations. The impact of pile-driving on sediment-dwelling invertebrates has received relatively little research, yet the data here suggest that such activities are likely to impact key coastal species which play important roles within the marine environment.LR would like to thank the organizers and sponsors of the 2016 conference for supporting her attendance for which she is extremely grateful. This study was partially funded by a research award from the Malacological Society of London to LR. The authors would also like to acknowledge Defra and NERC who funded the laboratory and field work aspects respectively, and the staff at the OREC field site, Blyth

    Exposure of benthic invertebrates to sediment vibration: From laboratory experiments to outdoor simulated pile-driving

    Get PDF
    Activities directly interacting with the seabed, such as pile-driving, can produce vibrations that have the potential to impact benthic invertebrates within their vicinity. This stimuli may interfere with crucial behaviors such as foraging and predator avoidance, and the sensitivity to vibration is largely unknown. Here, the responsiveness of benthic invertebrates to sediment vibration is discussed in relation to laboratory and semi-field trials with two marine species: the mussel (Mytilus edulis) and hermit crab (Pagurus bernhardus). Sensory threshold curves were produced for both species in controlled laboratory conditions, followed by small-scale pile-driving exposures in the field. The merits of behavioral indicators are discussed, in addition to using physiological measures, as a method of determining reception and measuring responses. The measurement and sensors required for sediment vibration quantification are also discussed. Response and threshold data were related to measurements taken in the vicinity of anthropogenic sources, allowing a link between responsiveness and actual operations. The impact of pile-driving on sediment-dwelling invertebrates has received relatively little research, yet the data here suggest that such activities are likely to impact key coastal species which play important roles within the marine environment

    Hygroscopic Behavior of NaCl-Bearing Natural Aerosol Particles Using Environmental Transmission Electron Microscopy

    Get PDF
    We used conventional and environmental transmission electron microscopes to determine morphology, composition, and water uptake of individual natural inorganic aerosol particles collected from industrial pollution plumes and from clean and polluted marine environments. Five particle types are described in detail. They range from relatively insoluble mineral grains to internally mixed particles containing NaCl with other soluble or relatively insoluble material. We studied the hygroscopic behavior of these particles from 0 to 100% relative humidity (RH). Relatively insoluble materials do not take up water over the experimental RH range. Single crystals of NaCl from both natural and laboratory sources have a well-defined deliquescence point of approximately 76% RH at 291 K. NaCl-bearing aggregate particles appear to deliquesce between 74 and 76% RH (same RH within error) when NaCl is internally mixed with relatively insoluble phases, but the particles deliquesce at lower RH when aggregated with other soluble phases such as NaNO3. For all NaCl-bearing particles studied, hygroscopic growth is pronounced above 76% RH, and water uptake by the particles is dominated by the soluble phase. Furthermore, the soluble phase initiating deliquescence controls the locus of further hygroscopic growth of the aggregate particle. Our results demonstrate that composition and mixing state affect water uptake of natural aerosol particles. Furthermore, internally mixed particles are confirmed to deliquesce at lower RH values than predicted from the individual components

    A tool to predict the impact of anthropogenic noise on fish

    Get PDF
    Anthropogenic (man-made) noise is a global problem in aquatic and terrestrial environments. In the shallow seas around many countries, including the UK, large windfarms are being constructed using pile driving to create a solid base for the turbines. Offshore pile driving creates pulsating noises and vibrations of very high intensities, which has been shown to be deleterious to a variety of aquatic species. Using a hydrodynamic model that predicts the propagation of underwater noise while taking into account bathymetry, tidal movements and currents, we integrated a numerical behavioural tool that models fish behaviour in response to noise. Using agent based modelling, scientifically published data and parameters obtained from carefully controlled experiments, we modelled the impact of noise on European sea bass (Dicentrarchus labrax) as they encountered pile driving during migration from the ocean to a spawning site close to the shore. Taking our empirical experiments into account - which showed a negative impact of noise on feeding behaviour and increased oxygen consumption - the model predicts that the fish took significantly longer to arrive at the spawning site. This effect could have important implications at a population level, as fish would use more energy to reach the site and might desynchronize spawning behaviour, which in turn would influence larval survival and life history processes that reduce fitness. This tool not only shows the value of using numerical models to predict animal behaviour in a complex environment, but also highlights the merit of using such models to predict anthropogenic impacts that would otherwise be difficult or too costly to obtain.NERCHR Wallingfor

    Modelling the impact of anthropogenic noise on fish

    Get PDF
    Anthropogenic noise is recognized as a global polluter and there is growing concern about its impact on aquatic organisms. Offshore pile driving (e.g. during wind farm construction) creates high intensity impulsive noise which differs from natural noise sources, although its frequency range overlaps with hearing ranges of many marine organisms. Several predictive models have been developed that predict the propagation of noise in aquatic environments, however models combining underwater noise propogation, hydrodynamics and likely animal behavioural responses have been lacking. HAMMER (Hydro-Acoustical Model for Mitigation of Ecological Response) is a tool that predicts underwater noise propagation while taking hydrodynamics into account and it subsequently predicts behavioural responses of animals using individual based modelling (IBM). As the quality of any predictive model is largely defined by its parameters, we decided to obtain crucial behavioural data for commercially important North Sea fish species exposed to a realistic noise source. To allow realistic behavioural responses, a field experiment using impact piling was conducted in a former dry-dock (size: 85 x 18 x 3 m). Behavioural and physiological data of Atlantic cod (Gadus morhua), plaice (Pleuronectes platessa) and black sea bream (Spondyliosoma cantharus) were obtained and incorporated into the HAMMER model. Here, we will discuss the results of the field experiment and the value of the tool for predicting animal behaviour in realistic marine environments

    Paternity of Subordinates Raises Cooperative Effort in Cichlids

    Get PDF
    Background In cooperative breeders, subordinates generally help a dominant breeding pair to raise offspring. Parentage studies have shown that in several species subordinates can participate in reproduction. This suggests an important role of direct fitness benefits for cooperation, particularly where groups contain unrelated subordinates. In this situation parentage should influence levels of cooperation. Here we combine parentage analyses and detailed behavioural observations in the field to study whether in the highly social cichlid Neolamprologus pulcher subordinates participate in reproduction and if so, whether and how this affects their cooperative care, controlling for the effect of kinship. Methodology/Principal Findings We show that: (i) male subordinates gained paternity in 27.8% of all clutches and (ii) if they participated in reproduction, they sired on average 11.8% of young. Subordinate males sharing in reproduction showed more defence against experimentally presented egg predators compared to subordinates not participating in reproduction, and they tended to stay closer to the breeding shelter. No effects of relatedness between subordinates and dominants (to mid-parent, dominant female or dominant male) were detected on parentage and on helping behaviour. Conclusions/Significance This is the first evidence in a cooperatively breeding fish species that the helping effort of male subordinates may depend on obtained paternity, which stresses the need to consider direct fitness benefits in evolutionary studies of helping behaviour

    Exposure of benthic invertebrates to sediment vibration:From laboratory experiments to outdoor simulated pile-driving

    Get PDF
    Activities directly interacting with the seabed, such as pile-driving, can produce vibrations that have the potential to impact benthic invertebrates within their vicinity. This stimuli may interfere with crucial behaviors such as foraging and predator avoidance, and the sensitivity to vibration is largely unknown. Here, the responsiveness of benthic invertebrates to sediment vibration is discussed in relation to laboratory and semi-field trials with two marine species: the mussel (Mytilus edulis) and hermit crab (Pagurus bernhardus). Sensory threshold curves were produced for both species in controlled laboratory conditions, followed by small-scale pile-driving exposures in the field. The merits of behavioral indicators are discussed, in addition to using physiological measures, as a method of determining reception and measuring responses. The measurement and sensors required for sediment vibration quantification are also discussed. Response and threshold data were related to measurements taken in the vicinity of anthropogenic sources, allowing a link between responsiveness and actual operations. The impact of pile-driving on sediment-dwelling invertebrates has received relatively little research, yet the data here suggest that such activities are likely to impact key coastal species which play important roles within the marine environment.</p

    The influence of sex and diet on the characteristics of hibernation in Syrian hamsters

    Get PDF
    Research on deep hibernators almost exclusively uses species captured from the wild or from local breeding. An exception is Syrian hamster (Mesocricetus auratus), the only standard laboratory animal showing deep hibernation. In deep hibernators, several factors influence hibernation quality, including body mass, sex and diet. We examined hibernation quality in commercially obtained Syrian hamsters in relation to body mass, sex and a diet enriched in polyunsaturated fatty acids. Animals (M/F:30/30, 12 weeks of age) were obtained from Harlan (IN, USA) and individually housed at 21 A degrees C and L:D 14:10 until 20 weeks of age, followed by L:D 8:16 until 27 weeks. Then conditions were changed to 5 A degrees C and L:D 0:24 for 9 weeks to induce hibernation. Movement was continuously monitored with passive infrared detectors. Hamsters were randomized to control diet or a diet 3x enriched in linoleic acid from 16 weeks of age. Hamsters showed a high rate of premature death (n = 24, 40%), both in animals that did and did not initiate torpor, which was unrelated to body weight, sex and diet. Time to death (31.7 +/- 3.1 days, n = 12) or time to first torpor bout (36.6 +/- 1.6 days, n = 12) was similar in prematurely deceased hamsters. Timing of induction of hibernation and duration of torpor and arousal was unaffected by body weight, sex or diet. Thus, commercially obtained Syrian hamsters subjected to winter conditions showed poor survival, irrespective of body weight, sex and diet. These factors also did not affect hibernation parameters. Possibly, long-term commercial breeding from a confined genetic background has selected against the hibernation trait
    • …
    corecore