7,489 research outputs found

    Radio and optical orientations of galaxies

    Full text link
    We investigate the correlations between optical and radio isophotal position angles for 14302 SDSS galaxies with rr magnitudes brighter than 18 and which have been associated with extended FIRST radio sources. We identify two separate populations of galaxies using the colour, concentration and their principal components. Surprisingly strong statistical alignments are found: late-type galaxies are overwhelmingly biased towards a position angle differences of 0∘0^{\circ} and early-type galaxies to 90∘90^{\circ}. The late-type alignment can be easily understood in terms of the standard picture in which the radio emission is intimately related to areas of recent star-formation. In early-type galaxies the radio emission is expected to be driven by accretion on to a nuclear black hole. We argue that the observed correlation of the radio axis with the minor axis of the large-scale stellar distribution gives a fundamental insight into the structure of elliptical galaxies, for example, whether or not the nuclear kinematics are decoupled form the rest of the galaxy. Our results imply that the galaxies are oblate spheroids with their radio emission aligned with the minor axis. Remarkably the strength of the correlation of the radio major axis with the optical minor axis depends on radio loudness. Those objects with a low ratio of FIRST radio flux density to total stellar light show a strong minor axis correlation while the stronger radio sources do not. This may reflect different formation histories for the different objects and we suggest we may be seeing the different behaviour of rationally supported and non-rotationally supported ellipticals.Comment: Version to appear in MNRA

    Film annotation system for a space experiment

    Get PDF
    This microprocessor system was designed to control and annotate a Nikon 35 mm camera for the purpose of obtaining photographs and data at predefined time intervals. The single STD BUSS interface card was designed in such a way as to allow it to be used in either a stand alone application with minimum features or installed in a STD BUSS computer allowing for maximum features. This control system also allows the exposure of twenty eight alpha/numeric characters across the bottom of each photograph. The data contains such information as camera identification, frame count, user defined text, and time to .01 second

    NICMOS and VLBA observations of the gravitational lens system B1933+503

    Get PDF
    NICMOS observations of the complex gravitational lens system B1933+503 reveal infrared counterparts to two of the inverted spectrum radio images. The infrared images have arc-like structures. The corresponding radio images are also detected in a VLBA map made at 1.7 GHz with a resolution of 6 mas. We fail to detect two of the four inverted radio spectrum components with the VLBA even though they are clearly visible in a MERLIN map at the same frequency at a different epoch. The absence of these two components could be due to rapid variability on a time-scale less than the time delay, or to broadening of the images during propagation of the radio waves through the ISM of the lensing galaxy to an extent that they fall below the surface brightness detectability threshold of the VLBA observations. The failure to detect the same two images with NICMOS is probably due to extinction in the ISM of the lensing galaxy.Comment: 5 pages, 4 figures, submitted to MNRA

    Project for the analysis of technology transfer Quarterly report, 13 Jul. - 12 Oct. 1968

    Get PDF
    Statistical characteristics of transfer data bank users, and outline of technology transfer and utilization instruction cours

    J0316+4328: a Probable "Asymmetric Double" Lens

    Full text link
    We report a probable gravitational lens J0316+4328, one of 19 candidate asymmetric double lenses (2 images at a high flux density ratio) from CLASS. Observations with the Very Large Array (VLA), MERLIN and the Very Long Baseline Array (VLBA) imply that J0316+4328 is a lens with high confidence. It has 2 images separated by 0.40", with 6 GHz flux densities of 62 mJy and 3.2 mJy. The flux density ratio of ~19 (constant over the frequency range 6-22 GHz) is the largest for any 2 image gravitational lens. High resolution optical imaging and deeper VLBI maps should confirm the lensing interpretation and provide inputs to detailed lens models. The unique configuration will give strong constraints on the lens galaxy's mass profile.Comment: Accepted to MNRAS Letters. 5 pages, 6 figures, 3 table

    A survey of polarization in the JVAS/CLASS flat-spectrum radio source surveys: I. The data and catalogue production

    Get PDF
    We have used the very large JVAS/CLASS 8.4-GHz surveys of flat-spectrum radio sources to obtain a large, uniformly observed and calibrated, sample of radio source polarizations. These are useful for many investigations of the properties of radio sources and the interstellar medium. We discuss comparisons with polarization measurements from this survey and from other large-scale surveys of polarization in flat-spectrum sources.Comment: Accepted by MNRAS. 8 pages, 5 figures. Full version of Table 2 available at http://www.jb.man.ac.uk/~njj/classqu_po

    Gravitational lensing statistics with extragalactic surveys. II. Analysis of the Jodrell Bank-VLA Astrometric Survey

    Get PDF
    We present constraints on the cosmological constant λ0\lambda_{0} from gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey (JVAS). Although this is the largest gravitational lens survey which has been analysed, cosmological constraints are only comparable to those from optical surveys. This is due to the fact that the median source redshifts of JVAS are lower, which leads to both relatively fewer lenses in the survey and a weaker dependence on the cosmological parameters. Although more approximations have to be made than is the case for optical surveys, the consistency of the results with those from optical gravitational lens surveys and other cosmological tests indicate that this is not a major source of uncertainty in the results. However, joint constraints from a combination of radio and optical data are much tighter. Thus, a similar analysis of the much larger Cosmic Lens All-Sky Survey should provide even tighter constraints on the cosmological constant, especially when combined with data from optical lens surveys. At 95% confidence, our lower and upper limits on λ0−Ω0\lambda_{0}-\Omega_{0}, using the JVAS lensing statistics information alone, are respectively -2.69 and 0.68. For a flat universe, these correspond to lower and upper limits on \lambda_{0} of respectively -0.85 and 0.84. Using the combination of JVAS lensing statistics and lensing statistics from the literature as discussed in Quast & Helbig (Paper I) the corresponding λ0−Ω0\lambda_{0}-\Omega_{0} values are -1.78 and 0.27. For a flat universe, these correspond to lower and upper limits on λ0\lambda_{0} of respectively -0.39 and 0.64.Comment: LaTeX, 9 pages, 18 PostScript files in 6 figures. Paper version available on request. Data available from http://gladia.astro.rug.nl:8000/ceres/data_from_papers/papers.htm

    Project for the analysis of technology transfer Quarterly evaluation report, 13 Oct. - 12 Dec. 1968

    Get PDF
    Technical support package usage documentation by technology transfer analysis projec
    • …
    corecore