21,966 research outputs found
Dynamic simulation of an electrorheological fluid
A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma=10^−4 to [infinity]. The effective viscosity of the suspension increases as Ma^−1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma^−1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected "snapshots" of the suspension microstructure. In particular, at small Ma, the suspension dynamics exhibit two distinct motions: a slow elastic-body-like deformation where electrostatic energy is stored, followed by a rapid microstructural rearrangement where energy is viscously dissipated. It is suggested that the observed dynamic yield stress is associated with these dynamics
Vacuum Polarisation and the Black Hole Singularity
In order to investigate the effects of vacuum polarisation on mass inflation
singularities, we study a simple toy model of a charged black hole with cross
flowing radial null dust which is homogeneous in the black hole interior. In
the region we find an approximate analytic solution to the
classical field equations. The renormalized stress-energy tensor is evaluated
on this background and we find the vacuum polarisation backreaction corrections
to the mass function . Asymptotic analysis of the semiclassical mass
function shows that the mass inflation singularity is much stronger in the
presence of vacuum polarisation than in the classical case.Comment: 12 pages, RevTe
Pressure-driven flow of suspensions: simulation and theory
Dynamic simulations of the pressure-driven flow in a channel of a non-Brownian suspension at zero Reynolds number were conducted using Stokesian Dynamics. The simulations are for a monolayer of identical particles as a function of the dimensionless channel width and the bulk particle concentration. Starting from a homogeneous dispersion, the particles gradually migrate towards the centre of the channel, resulting in an homogeneous concentration profile and a blunting of the particle velocity profile. The time for achieving steady state scales as (H/a)3a/[left angle bracket]u[right angle bracket], where H is the channel width, a the radii of the particles, and [left angle bracket]u[right angle bracket] the average suspension velocity in the channel. The concentration and velocity profiles determined from the simulations are in qualitative agreement with experiment.
A model for suspension flow has been proposed in which macroscopic mass, momentum and energy balances are constructed and solved simultaneously. It is shown that the requirement that the suspension pressure be constant in directions perpendicular to the mean motion leads to particle migration and concentration variations in inhomogeneous flow. The concept of the suspension ‘temperature’ – a measure of the particle velocity fluctuations – is introduced in order to provide a nonlocal description of suspension behaviour. The results of this model for channel flow are in good agreement with the simulations
The Muscadine Experience: Adding Value to Enhance Profits
The University of Arkansas Division of Agriculture received a grant from the National Research Initiative (NRI), CSREES USDA. The purpose was to help small- and medium-sized farmers and entrepreneurs enhance the viability of their farms through the establishment of vineyards, on-farm wineries, and production of value-added products from grapes and grape by-products. This publication looks at efforts by the UA Grape and Wine Research Program to enhance the profitability of muscadine grapes. Included are discussions of research designed to develop the market potential of muscadines as fresh fruit and as value-added products such as juice, wine, sweet spreads, vinegar, and dried products. The skin and seeds of muscadines have traditionally been considered waste; however, recent research has shown that they contain nutraceutical components. Reports are included of research to quantify these nutraceuticals and to develop products containing them
Self-diffusion in sheared suspensions by dynamic simulation
The behaviour of the long-time self-diffusion tensor in concentrated colloidal dispersions is studied using dynamic simulation. The simulations are of a suspension of monodisperse Brownian hard spheres in simple shear flow as a function of the Péclet number, Pe, which measures the relative importance of shear and Brownian forces, and the volume fraction, [phi]. Here, Pe = &[gamma]dot;a^2/D0, where &[gamma]dot; is the shear rate, a the particle size and D0 = kT/6[pi][eta]a is the Stokes–Einstein diffusivity of an isolated particle of size a with thermal energy kT in a solvent of viscosity [eta]. Two simulations algorithms are used: Stokesian Dynamics for inclusion of the many-body hydrodynamic interactions, and Brownian Dynamics for suspensions without hydrodynamic interactions. A new procedure for obtaining high-quality diffusion data based on averaging the results of many short simulations is presented and utilized. At low shear rates, low Pe, Brownian diffusion due to a random walk process dominates and the characteristic scale for diffusion is the Stokes–Einstein diffusivity, D0. At zero Pe the diffusivity is found to be a decreasing function of [phi]. As Pe is slowly increased, O(Pe) and O(Pe^3/2) corrections to the diffusivity due to the flow are clearly seen in the Brownian Dynamics system in agreement with the theoretical results of Morris & Brady (1996). At large shear rates, large Pe, both systems exhibit diffusivities that grow linearly with the shear rate by the non-Brownian mechanism of shear-induced diffusion. In contrast to the behaviour at low Pe, this shear-induced diffusion mode is an increasing function of [phi]. Long-time rotational self-diffusivities are of interest in the Stokesian Dynamics system and show similar behaviour to their translational analogues. An off-diagonal long-time self-diffusivity, Dxy, is reported for both systems. Results for both the translational and rotational Dxy show a sign change from low Pe to high Pe due to different mechanisms in the two regimes. A physical explanation for the off-diagonal diffusivities is proposed
Cosmic Censorship: As Strong As Ever
Spacetimes which have been considered counter-examples to strong cosmic
censorship are revisited. We demonstrate the classical instability of the
Cauchy horizon inside charged black holes embedded in de Sitter spacetime for
all values of the physical parameters. The relevant modes which maintain the
instability, in the regime which was previously considered stable, originate as
outgoing modes near to the black hole event horizon. This same mechanism is
also relevant for the instability of Cauchy horizons in other proposed
counter-examples of strong cosmic censorship.Comment: 4 pages RevTeX style, 1 figure included using epsfi
Numerical investigation of black hole interiors
Gravitational perturbations which are present in any realistic stellar
collapse to a black hole, die off in the exterior of the hole, but experience
an infinite blueshift in the interior. This is believed to lead to a slowly
contracting lightlike scalar curvature singularity, characterized by a
divergence of the hole's (quasi-local) mass function along the inner horizon.
The region near the inner horizon is described to great accuracy by a plane
wave spacetime. While Einstein's equations for this metric are still too
complicated to be solved in closed form it is relatively simple to integrate
them numerically.
We find for generic regular initial data the predicted mass inflation type
null singularity, rather than a spacelike singularity. It thus seems that mass
inflation indeed represents a generic self-consistent picture of the black hole
interior.Comment: 6 pages LaTeX, 3 eps figure
- …