4,733 research outputs found

    Coupling between aging and convective motion in a colloidal glass of Laponite

    Get PDF
    We study thermal convection in a colloidal glass of Laponite in formation. Low concentration preparation are submitted to destabilizing vertical temperature gradient, and present a gradual transition from a turbulent convective state to a steady conductive state as their viscosity increases. The time spent under convection is found to depend strongly on sample concentration, decreasing exponentially with mass fraction of colloidal particles. Moreover, at fixed concentration, it also depends slightly on the pattern selected by the Rayleigh B\'{e}nard instability: more rolls maintain the convection state longer. This behavior can be interpreted with recent theoretical approaches of soft glassy material rheology.Comment: Eur. Phys. J. B 55, 101-107 (2007) The original publication is available at http://www.springerlink.co

    New N=1 Extended Superconformal Algebras with Two and Three Generators

    Full text link
    In this paper we consider extensions of the super Virasoro algebra by one and two super primary fields. Using a non-explicitly covariant approach we compute all SW-algebras with one generator of dimension up to 7 in addition to the super Virasoro field. In complete analogy to W-algebras with two generators most results can be classified using the representation theory of the super Virasoro algebra. Furthermore, we find that the SW(3/2, 11/2)-algebra can be realized as a subalgebra of SW(3/2, 5/2) at c = 10/7. We also construct some new SW-algebras with three generators, namely SW(3/2, 3/2, 5/2), SW(3/2, 2, 2) and SW(3/2, 2, 5/2).Comment: 30 pages (Plain TeX), BONN-HE-92-0

    Dynamical heterogeneity in aging colloidal glasses of Laponite

    Full text link
    Glasses behave as solids due to their long relaxation time; however the origin of this slow response remains a puzzle. Growing dynamic length scales due to cooperative motion of particles are believed to be central to the understanding of both the slow dynamics and the emergence of rigidity. Here, we provide experimental evidence of a growing dynamical heterogeneity length scale that increases with increasing waiting time in an aging colloidal glass of Laponite. The signature of heterogeneity in the dynamics follows from dynamic light scattering measurements in which we study both the rotational and translational diffusion of the disk-shaped particles of Laponite in suspension. These measurements are accompanied by simultaneous microrheology and macroscopic rheology experiments. We find that rotational diffusion of particles slows down at a faster rate than their translational motion. Such decoupling of translational and orientational degrees of freedom finds its origin in the dynamic heterogeneity since rotation and translation probe different length scales in the sample. The macroscopic rheology experiments show that the low frequency shear viscosity increases at a much faster rate than both rotational and translational diffusive relaxation times.Comment: 12 pages, 5 figures, Accepted in Soft Matter 201

    Microwave Conductivity due to Impurity Scattering in a d-wave Superconductor

    Full text link
    The self-consistent t-matrix approximation for impurity scattering in unconventional superconductors is used to interpret recent measurements of the temperature and frequency dependence of the microwave conductivity of YBCO crystals below 20K. In this theory, the conductivity is expressed in terms of a fequency dependent single particle self-energy, determined by the impurity scattering phase shift which is small for weak (Born) scattering and approaches π/2\pi / 2 for unitary scattering. Inverting this process, microwave conductivity data are used to extract an effective single-particle self-energy and obtain insight into the nature of the operative scattering processes. It is found that the effective self-energy is well approximated by a constant plus a linear term in frequency with a small positive slope for thermal quasiparticle energies below 20K. Possible physical origins of this form of self-energy are discussed.Comment: 5 pages, 4 figure

    Shear thickening of cornstarch suspensions as a re-entrant jamming transition

    Get PDF
    We study the rheology of cornstarch suspensions, a dense system of non-Brownian particles that exhibits shear thickening, i.e. a viscosity that increases with increasing shear rate. Using MRI velocimetry we show that the suspension has a yield stress. From classical rheology it follows that as a function of the applied stress the suspension is first solid (yield stress), then liquid and then solid again when it shear thickens. The onset shear rate for thickening is found to depend on the measurement geometry: the smaller the gap of the shear cell, the lower the shear rate at which thickening occurs. Shear thickening can then be interpreted as the consequence of the Reynolds dilatancy: the system under flow wants to dilate but instead undergoes a jamming transition because it is confined, as confirmed by measurement of the dilation of the suspension as a function of the shear rate

    Droplet size from Venturi air induction spray nozzles

    Get PDF
    Sprays are of great importance for many applications, with drop size being a crucial parameter. Especially in agriculture applications, simple flat fan spray nozzles are often supplemented by a Venturi component to achieve larger drop sizes and hence, prevent unwanted spray drift of the smallest droplets. The general believe is that these larger drops are usually attributed to the fact that the liquid sheet produced by the nozzle breaks up more easily due to the pre-existing ’holes’ formed by the induced air bubbles. Here, we extend descriptions of how nozzle and fluid parameters determine droplet size distributions from Venturi nozzles. We show that the mean droplet size is determined by the nozzle’s orifice area as is the case for ordinary flat fan nozzles, but that the additional pressure drop over the Venturi chamber needs to be taken into account. Using this parameter, relations that were derived for flat fan nozzles can be re-used. This allows to show that the increase in droplet size compared to conventional nozzles is due to the additional pressure drop in the Venturi chamber, and not to a change in breakup mechanism due to the presence of air bubbles in the liquid sheet.</p
    • …
    corecore