7 research outputs found

    Anomalous electron trapping by localized magnetic fields

    Full text link
    We consider an electron with an anomalous magnetic moment g>2 confined to a plane and interacting with a nonzero magnetic field B perpendicular to the plane. We show that if B has compact support and the magnetic flux in the natural units is F\ge 0, the corresponding Pauli Hamiltonian has at least 1+[F] bound states, without making any assumptions about the field profile. Furthermore, in the zero-flux case there is a pair of bound states with opposite spin orientations. Using a Birman-Schwinger technique, we extend the last claim to a weak rotationally symmetric field with B(r) = O(r^{-2-\delta}) correcting thus a recent result. Finally, we show that under mild regularity assumptions the existence can be proved for non-symmetric fields with tails as well.Comment: A LaTeX file, 12 pages; to appear in J. Phys. A: Math. Ge

    Weakly coupled states on branching graphs

    Full text link
    We consider a Schr\"odinger particle on a graph consisting of N\,N\, links joined at a single point. Each link supports a real locally integrable potential Vj\,V_j\,; the self--adjointness is ensured by the δ\,\delta\, type boundary condition at the vertex. If all the links are semiinfinite and ideally coupled, the potential decays as x1ϵ\,x^{-1-\epsilon} along each of them, is non--repulsive in the mean and weak enough, the corresponding Schr\"odinger operator has a single negative eigenvalue; we find its asymptotic behavior. We also derive a bound on the number of bound states and explain how the δ\,\delta\, coupling constant may be interpreted in terms of a family of squeezed potentials.Comment: LaTeX file, 7 pages, no figure
    corecore