659 research outputs found

    Series expansions without diagrams

    Full text link
    We discuss the use of recursive enumeration schemes to obtain low and high temperature series expansions for discrete statistical systems. Using linear combinations of generalized helical lattices, the method is competitive with diagramatic approaches and is easily generalizable. We illustrate the approach using the Ising model and generate low temperature series in up to five dimensions and high temperature series in three dimensions. The method is general and can be applied to any discrete model. We describe how it would work for Potts models.Comment: 24 pages, IASSNS-HEP-93/1

    Large Nc Continuum Reduction and the Thermodynamics of QCD

    Full text link
    It is noted that if large Nc continuum reduction applies to an observable, then that observable is independent of temperature for all temperatures below some critical value. This fact, plus the fact that mesons and glueballs are weakly interacting at large Nc is used as the basis for a derivation of large Nc continuum reduction for the chiral condensate. The structure of this derivation is quite general and can be extended to a wide class of observables

    Thermostatistics of extensive and non-extensive systems using generalized entropies

    Full text link
    We describe in detail two numerical simulation methods valid to study systems whose thermostatistics is described by generalized entropies, such as Tsallis. The methods are useful for applications to non-trivial interacting systems with a large number of degrees of freedom, and both short-range and long-range interactions. The first method is quite general and it is based on the numerical evaluation of the density of states with a given energy. The second method is more specific for Tsallis thermostatistics and it is based on a standard Monte Carlo Metropolis algorithm along with a numerical integration procedure. We show here that both methods are robust and efficient. We present results of the application of the methods to the one-dimensional Ising model both in a short-range case and in a long-range (non-extensive) case. We show that the thermodynamic potentials for different values of the system size N and different values of the non-extensivity parameter q can be described by scaling relations which are an extension of the ones holding for the Boltzmann-Gibbs statistics (q=1). Finally, we discuss the differences in using standard or non-standard mean value definitions in the Tsallis thermostatistics formalism and present a microcanonical ensemble calculation approach of the averages.Comment: Submitted to Physica A. LaTeX format, 38 pages, 17 EPS figures. IMEDEA-UIB, 07071 Palma de Mallorca, Spain, http://www.imedea.uib.e

    Numerical Determination of the Distribution of Energies for the XY-model

    Full text link
    We compute numerically the distribution of energies W(E,N) for the XY-model with short-range and long-range interactions. We find that in both cases the distribution can be fitted to the functional form: W(E,N) ~ exp(N f(E,N)), with f(E,N) an intensive function of the energy.Comment: 4 pages, 1 figure. Submitted to Physica

    Numerical results from large N reduced QCD_2

    Get PDF
    Some results in QCD_2 at large N are presented using the reduced model on the lattice. Overlap fermions are used to compute meson propagators.Comment: 3 pages, contribution to Lattice 2002, Bosto

    New Algorithm of the Finite Lattice Method for the High-temperature Expansion of the Ising Model in Three Dimensions

    Full text link
    We propose a new algorithm of the finite lattice method to generate the high-temperature series for the Ising model in three dimensions. It enables us to extend the series for the free energy of the simple cubic lattice from the previous series of 26th order to 46th order in the inverse temperature. The obtained series give the estimate of the critical exponent for the specific heat in high precision.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter

    Breakdown of large-N quenched reduction in SU(N) lattice gauge theories

    Full text link
    We study the validity of the large-N equivalence between four-dimensional SU(N) lattice gauge theory and its momentum quenched version--the Quenched Eguchi-Kawai (QEK) model. We find that the assumptions needed for the proofs of equivalence do not automatically follow from the quenching prescription. We use weak-coupling arguments to show that large-N equivalence is in fact likely to break down in the QEK model, and that this is due to dynamically generated correlations between different Euclidean components of the gauge fields. We then use Monte-Carlo simulations at intermediate couplings with 20 <= N <= 200 to provide strong evidence for the presence of these correlations and for the consequent breakdown of reduction. This evidence includes a large discrepancy between the transition coupling of the "bulk" transition in lattice gauge theories and the coupling at which the QEK model goes through a strongly first-order transition. To accurately measure this discrepancy we adapt the recently introduced Wang-Landau algorithm to gauge theories.Comment: 51 pages, 16 figures, Published verion. Historical inaccuracies in the review of the quenched Eguchi-Kawai model are corrected, discussion on reduction at strong-coupling added, references updated, typos corrected. No changes to results or conclusion

    The Effects of Spinal Mobilizations, Manual Stretching, and Exercises in the Treatment of Testicular Pain: A Case Report

    Get PDF
    The purpose of this case report was to describe the PT management in relieving testicular pain related to genitofemoral nerve entrapment

    Phases of three dimensional large N QCD on a continuum torus

    Full text link
    It is established by numerical means that continuum large N QCD defined on a three dimensional torus can exist in four different phases. They are (i) confined phase; (ii) deconfined phase; (iii) small box at zero temperature and (iv) small box at high temperatures.Comment: 11 pages, 6 figures, 1 tabl

    Modular Invariance, Finiteness, and Misaligned Supersymmetry: New Constraints on the Numbers of Physical String States

    Full text link
    We investigate the generic distribution of bosonic and fermionic states at all mass levels in non-supersymmetric string theories, and find that a hidden ``misaligned supersymmetry'' must always appear in the string spectrum. We show that this misaligned supersymmetry is ultimately responsible for the finiteness of string amplitudes in the absence of full spacetime supersymmetry, and therefore the existence of misaligned supersymmetry provides a natural constraint on the degree to which spacetime supersymmetry can be broken in string theory without destroying the finiteness of string amplitudes. Misaligned supersymmetry also explains how the requirements of modular invariance and absence of physical tachyons generically affect the distribution of states throughout the string spectrum, and implicitly furnishes a two-variable generalization of some well-known results in the theory of modular functions.Comment: standard LaTeX; 55 pages, 4 figures. (Note: This replaced version matches the version which was published in Nuclear Physics B.
    • …
    corecore