97 research outputs found

    Alternaria species associated with early blight epidemics on tomato and other Solanaceae crops in northwestern Algeria

    Get PDF
    Early blight is a common disease of Solanaceae crops worldwide. The occurrence of Alternaria spp. was studied during three epidemics on tomato in northwestern Algeria. Alternaria was detected in more than 80 % of the diseased plant samples and accounted for more than 50 % of the total fungal isolates recovered from these samples. Morphological and molecular investigations revealed that small-spored isolates producing beaked conidia, i.e. belonging to the section alternaria, were prominent in most of the surveyed locations representing more than 80 % of the total Alternaria isolates in three locations (Mascara, Ain Témouchent and Sidi Belabbèsse). Based on their sporulation patterns they were recognized as A. alternata and A. tenuissima. Small-spored isolates producing conidia without beak and assigned to A. consortialis were also found at a low frequency (< 1 %). Large-spored isolates producing conidia ended by typical long beaks and identified as A. linariae (syn. A. tomatophila), A. solani and A. grandis were also recovered from all the sampled areas and represented 33.8 %, 6.3 % and 1.3 % of the total Alternaria isolates, respectively. Pathogenicity tests on tomato with a selection of 85 strains representative of the isolates collection revealed that all the tested isolates were able to produce extending lesions on inoculated leaves albeit with variable intensity. Large-spored species included the most aggressive isolates. Small-spored Alternaria, although less aggressive than large-spored Alternaria, had the ability to provoke brown necrotic spots and circumstantially developed synergistic interactions in mixed infections with moderately aggressive isolates of A. linariae

    Evaluation of different methods for the characterization of carrot resistance to the alternaria leaf blight pathogen (Alternaria dauci) revealed two qualitatively different resistances

    Get PDF
    Alternaria leaf blight (ALB), caused by Alternaria dauci, is one of the most damaging foliar diseases of carrot worldwide. The aim of this study was to compare different methods for evaluating levels of carrot resistance to ALB. Three techniques were investigated by comparison with a visual disease assessment control: in vivo conidial germination, a bioassay based on a drop-inoculation method, and in planta quantification of fungal biomass by quantitative PCR (Q-PCR). Three carrot cultivars showing different degrees of resistance to A. dauci were used, i.e. a susceptible cultivar (Presto) and two partially resistant genotypes (Texto and Bolero), challenged with an aggressive or a very aggressive isolate of A. dauci. Both partially resistant genotypes produced a higher mean number of germ tubes per conidium (up to 3·42±0·35) than the susceptible one (1·26±0·18). The drop-inoculation results allowed one of the partially resistant genotypes (Bolero, log10(S+1) = 1·34±0·13) to be distinguished from the susceptible one (1·90±0·13). By contrast, fungal growth measured by Q-PCR clearly differentiated the two partially resistant genotypes with log10(I) values of 2·77±0·13 compared to the susceptible cultivar (3·65±0·13) at 15 days post-inoculation. This result was strongly correlated (r2 = 0·91) with the disease severity index scored at the same date. Data obtained with the different assessment methods strongly suggest that the Texto and Bolero genotypes have different genetic resistance sources

    Evaluating aggressiveness and host range of Alternaria dauci in a controlled environment

    Get PDF
    The aggressiveness of Alternaria dauci isolates was investigated in greenhouse conditions. Twenty-seven isolates were pre-selected from a large collection to represent high diversity according to geographic or host origins and intergenic spacer (IGS) polymorphism. IGS sequence analysis revealed that isolates were grouped within three different clusters. Eleven isolates were selected and inoculated on a susceptible carrot cultivar. Three criteria (mean lesion number, mean necrotic leaf area and mean disease index) were used to assess the aggressiveness of isolates. Continuous variation in aggressiveness was shown and no clear division into isolate classes was evident. For the host range study, two isolates were inoculated under greenhouse conditions onto nine cultivated Apiaceae species, two wild Daucus species and six cultivated non-Apiaceae species representing six botanical families. Lesions varying in severity were observed on all dicot species (Apiaceae and non-Apiaceae), but no symptoms developed on the two monocots studied (leek and sweetcorn). Plant species were also differentiated on the basis of expanding lesions (cultivated and wild carrot, dill and fennel) or non-expanding lesions (other dicot species). Typical A. dauci conidia were observed after in vitro incubation of leaves with symptoms. Fungal structures were isolated from lesions and A. dauci was confirmed on the basis of conidial morphology and specific conventional PCR results. Genotyping of individual isolates performed with microsatellite markers confirmed the presence of the inoculated isolate. The results clearly showed that, in controlled conditions, the host range of A. dauci is not restricted to carrot

    The Arabidopsis thaliana-Alternaria brassicicola pathosystem: A model interaction for investigating seed transmission of necrotrophic fungi

    Get PDF
    Seed transmission constitutes a major component of the parasitic cycle for several fungal pathogens. However, very little is known concerning fungal or plant genetic factors that impact seed transmission and mechanisms underlying this key biological trait have yet to be clarified. Such lack of available data could be probably explained by the absence of suitable model pathosystem to study plant-fungus interactions during the plant reproductive phase

    Expression of carotenoid biosynthesis genes during carrot root development

    Get PDF
    Carotenogenesis has been extensively studied in fruits and flower petals. Transcriptional regulation is thought to be the major factor in carotenoid accumulation in these organs. However, little is known about regulation in root organs. The root carotenoid content of carrot germplasm varies widely. The present study was conducted to investigate transcriptional regulation of carotenoid biosynthesis genes in relation to carotenoid accumulation during early carrot root development and up to 3 months after sowing. HPLC carotenoid content analysis and quantitative RT-PCR were compared to quantify the expression of eight genes encoding carotenoid biosynthesis enzymes during the development of white, yellow, orange, and red carrot roots. The genes chosen encode phytoene synthase (PSY1 and PSY2), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS1 and ZDS2), lycopene ε-cyclase (LCYE), lycopene β-cyclase (LCYB1), and zeaxanthin epoxidase (ZEP). All eight genes were expressed in the white cultivar even though it did not contain carotenoids. By contrast with fruit maturation, the expression of carotenogenic genes began during the early stages of development and then progressively increased for most of these genes during root development as the total carotenoid level increased in coloured carrots. The high expression of genes encoding LCYE and ZDS noted in yellow and red cultivars, respectively, might be consistent with the accumulation of lutein and lycopene, respectively. The results showed that the accumulation of total carotenoids during development and the accumulation of major carotenoids in the red and yellow cultivars might partially be explained by the transcriptional level of genes directing the carotenoid biosynthesis pathway
    • …
    corecore