8,346 research outputs found

    Coupled Ferromagnetic and Nematic Ordering of Fermions in an Optical Flux Lattice

    Full text link
    Ultracold atoms in Raman-dressed optical lattices allow for effective momentum-dependent interactions among single-species fermions originating from short-range s-wave interactions. These dressed-state interactions combined with very flat bands encountered in the recently introduced optical flux lattices push the Stoner instability towards weaker repulsive interactions, making it accessible with current experiments. As a consequence of the coupling between spin and orbital degrees of freedom, the magnetic phase features Ising nematic order.Comment: 5 pages, 4 figures (published version

    Coherent photon-photon interactions in very peripheral relativistic heavy ion collisions

    Get PDF
    Heavy ions at high velocities provide very strong electromagnetic fields for a very short time. The main characteristics of ultraperipheral relativistic heavy ion collisions are reviewed, characteristic parameters are identified. The main interest in ultraperipheral heavy ion collisions at relativistic ion colliders like the LHC is the interactions of very high energy (equivalent) photons with the countermoving (equivalent) photons and hadrons (protons/ions). The physics of these interactions is quite different from and complementary to the physics of the strong fields achieved with current and future lasers.Comment: 5 pages, 5 figures, invited talk presented at the ELI Workshop and School on Fundamental Physics with Ultra-high Fields (September 29- October 2, 2008, Frauenwoerth, German

    Production of Low Mass Electron Pairs Due to the Photon-Photon Mechanism in Central Collisions

    Get PDF
    We calculate the probability for dilepton production in central relativistic heavy ion collisions due to the gamma-gamma mechanism. This is a potential background to more interesting mechanisms. We find that this mechanism is negligible in the CERES experiments. Generally, the contribution due to this mechanism is small in the central region, while it can be large for small invariant masses and forward or backward rapidities. A simple formula based on the equivalent photon approximation and applications to a possible scenario at RHIC are also given.Comment: 10 pages REVTeX, 5 Figures, for related work see http://quasar.physik.unibas.ch/~hencken
    • …
    corecore