293 research outputs found

    Limits on Non-Linear Electrodynamics

    Get PDF
    In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested

    Characterization of the Vacuum Birefringence Polarimeter at BMV: Dynamical Cavity Mirror Birefringence

    Full text link
    We present the current status and outlook of the optical characterization of the polarimeter at the Bir\'{e}fringence Magn\'etique du Vide (BMV) experiment. BMV is a polarimetric search for the QED predicted anisotropy of vacuum in the presence of external electromagnetic fields. The main challenge faced in this fundamental test is the measurement of polarization ellipticity on the order of 10−15{10^{-15}} induced in linearly polarized laser field per pass through a magnetic field having an amplitude and length B2L=100 T2m{B^{2}L=100\,\mathrm{T}^{2}\mathrm{m}}. This challenge is addressed by understanding the noise sources in precision cavity-enhanced polarimetry. In this paper we discuss the first investigation of dynamical birefringence in the signal-enhancing cavity as a result of cavity mirror motion.Comment: To appear in the 2019 CPEM special issue of IEEE Transactions on Instrumentation and Measuremen

    Optical spectroscopy of a microsized Rb vapour sample in magnetic fields up to 58 tesla

    Full text link
    We use a magnetometer probe based on the Zeeman shift of the rubidium resonant optical transition to explore the atomic magnetic response for a wide range of field values. We record optical spectra for fields from few tesla up to 60 tesla, the limit of the coil producing the magnetic field. The atomic absorption is detected by the fluorescence emissions from a very small region with a submillimiter size. We investigate a wide range of magnetic interactions from the hyperfine Paschen-Back regime to the fine one, and the transitions between them. The magnetic field measurement is based on the rubidium absorption itself. The rubidium spectroscopic constants were previously measured with high precision, except the excited state Land\'e gg-factor that we derive from the position of the absorption lines in the transition to the fine Paschen-Back regime. Our spectroscopic investigation, even if limited by the Doppler broadening of the absorption lines, measures the field with a 20 ppm uncertainty at the explored high magnetic fields. Its accuracy is limited to 75 ppm by the excited state Land\'e gg-factor determination

    Noise characterization for resonantly-enhanced polarimetric vacuum magnetic-birefringence experiments

    Full text link
    In this work we present data characterizing the sensitivity of the Bir\'{e}fringence Magnetique du Vide (BMV) instrument. BMV is an experiment attempting to measure vacuum magnetic birefringence (VMB) via the measurement of an ellipticity induced in a linearly polarized laser field propagating through a birefringent region of vacuum in the presence of an external magnetic field. Correlated measurements of laser noise alongside the measurement in the main detection channel allow us to separate measured sensing noise from the inherent birefringence noise of the apparatus. To this end we model different sources of sensing noise for cavity-enhanced polarimetry experiments, such as BMV. Our goal is to determine the main sources of noise, clarifying the limiting factors of such an apparatus. We find our noise models are compatible with the measured sensitivity of BMV. In this context we compare the phase sensitivity of separate-arm interferometers to that of a polarimetry apparatus for the discussion of current and future VMB measurements

    Vacuum magnetic linear birefringence using pulsed fields: the BMV experiment

    Full text link
    We present the current status of the BMV experiment. Our apparatus is based on an up-to-date resonant optical cavity coupled to a transverse magnetic field. We detail our data acquisition and analysis procedure which takes into account the symmetry properties of the raw data with respect to the orientation of the magnetic field and the sign of the cavity birefringence. The measurement result of the vacuum magnetic linear birefringence k_\mathrm{CM}presentedinthispaperwasobtainedwithabout200magneticpulsesandamaximumfieldof6.5 T,givinganoisefloorofabout presented in this paper was obtained with about 200 magnetic pulses and a maximum field of 6.5\,T, giving a noise floor of about 8 \times 10^{-21} T\,T^{-2}at at 3\sigma$ confidence level

    Agriculture

    Get PDF
    EntrĂ©e d'encyclopĂ©die. Voir sur mon site:http://vbat.org/spip.php?article75Introduction:From the Latin agricultura (ager, field and cultura, cultivation), agriculture refers to the processes by which food is grown and harvested. It also pertains to the sector of the economy dedicated to harvested foods.Soil cultivation for the production of crops began in the ancient Near East around 10,000 BCE (the Neolithic Revolution), and agriculture is the base of the past and current civilizations of the region. In 1996, 50 percent of the Middle East's population still lived in rural areas. Through the centuries, various rural cultures have developed, and they have balanced environmental and social factors and introduced for example various collective water-management systems. Nevertheless, in terms of food, the Middle East and North Africa (MENA) has become the least self-sufficient of the world's major populated regions.Introduction :Du latin agricultura (ager, champs et cultura, culture), l'agriculture rĂ©fĂšre au processus par lesquels des aliments sont cultivĂ©s et rĂ©coltĂ©s. Cela concerne aussi le secteur de l'Ă©conomie dĂ©diĂ© Ă  l'alimentation rĂ©coltĂ©e.La culture du sol pour la production de rĂ©colte commença dans l'ancien Proche-Orient autour de 10 000 avt-JC (la rĂ©volution nĂ©olithique) et l'agriculture est Ă  la fondation des civilisations passĂ©es et contemporaines de la rĂ©gion. En 1996, 50 pour cent de la population du Moyen-Orient vivait encore en zone rurale. À travers les siĂšcles, diffĂ©rentes cultures rurales se sont dĂ©veloppĂ©es et elles ont constamment ajustĂ©s des facteurs environnementaux et sociaux et introduit par exemple diffĂ©rents systĂšmes de gestion collective de l'eau. NĂ©anmoins, en terme d'alimentation, le Moyen-Orient et l'Afrique du Nord sont devenus les moins autosuffisants des rĂ©gions les plus peuplĂ©es du globe

    Bloch oscillations of ultracold atoms: a tool for a metrological determination of h/mRbh/m_{Rb}

    Full text link
    We use Bloch oscillations in a horizontal moving standing wave to transfer a large number of photon recoils to atoms with a high efficiency (99.5% per cycle). By measuring the photon recoil of 87Rb^{87}Rb, using velocity selective Raman transitions to select a subrecoil velocity class and to measure the final accelerated velocity class, we have determined h/mRbh/m_{Rb} with a relative precision of 0.4 ppm. To exploit the high momentum transfer efficiency of our method, we are developing a vertical standing wave set-up. This will allow us to measure h/mRbh/m_{Rb} better than 10−810^{-8} and hence the fine structure constant α\alpha with an uncertainty close to the most accurate value coming from the (g−2g-2) determination

    Inverse Cotton-Mouton effect of the Vacuum and of atomic systems

    Full text link
    In this letter we calculate the Inverse Cotton-Mouton Effect (ICME) for the vacuum following the predictions of Quantum ElectroDynamics. We compare the value of this effect for the vacuum with the one expected for atomic systems. We finally show that ICME could be measured for the first time for noble gases using state-of-the-art laser systems and for the quantum vacuum with near-future laser facilities like ELI and HiPER, providing in particular a test of the nonlinear behaviour of quantum vacuum at intensities below the Schwinger limit of 4.5x10^33 W/m^2.Comment: Submitted to EP

    Observation of the Inverse Cotton-Mouton Effect

    Full text link
    We report the observation of the Inverse Cotton-Mouton Effect (ICME) i.e. a magnetization induced in a medium by non resonant linearly polarized light propagating in the presence of a transverse magnetic field. We present a detailed study of the ICME in a TGG crystal showing the dependence of the measured effect on the light intensity, the optical polarization, and on the external magnetic field. We derive a relation between the Cotton-Mouton and Inverse Cotton-Mouton effects that is roughly in agreement with existing experimental data. Our results open the way to applications of the ICME in optical devices

    No light shining through a wall : new results from a photoregeneration experiment

    Full text link
    Recently, axion-like particle search has received renewed interest. In particular, several groups have started ``light shining through a wall'' experiments based on magnetic field and laser both continuous, which is very demanding in terms of detector background. We present here the 2σ\sigma limits obtained so far with our novel set-up consisting of a pulsed magnetic field and a pulsed laser. In particular, we have found that the axion-like particle two photons inverse coupling constant MM is >8×105> 8\times 10^5 GeV provided that the particle mass ma∌m_\mathrm{a} \sim 1 meV. Our results definitively invalidate the axion interpretation of the original PVLAS optical measurements with a confidence level greater than 99.9%.Comment: Version that will appear in Physical Review Letters, Vol. 99, n. 18, (2 Nov 2007
    • 

    corecore