508 research outputs found

    Dynamic reorganization of vortex matter into partially disordered lattices

    Full text link
    We report structural evidence of dynamic reorganization in vortex matter in clean NbSe2_2 by joint small angle neutron scattering and ac-susceptibility measurements. The application of oscillatory forces in a transitional region near the order-disorder transition results in robust bulk vortex lattice configurations with an intermediate degree of disorder. These dynamically-originated configurations correlate with intermediate pinning responses previously observed, resolving a long standing debate regarding the origin of such responses.Comment: 9 pages, 7 figures. To be published in Physical Review Letter

    Sudden vanishing and reappearance of nonclassical effects: General occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses

    Full text link
    Analyses of phenomena exhibiting finite-time decay of quantum entanglement have recently attracted considerable attention. Such decay is often referred to as sudden vanishing (or sudden death) of entanglement, which can be followed by its sudden reappearance (or sudden rebirth). We analyze various finite-time decays (for dissipative systems) and analogous periodic vanishings (for unitary systems) of nonclassical correlations as described by violations of classical inequalities and the corresponding nonclassicality witnesses (or quantumness witnesses), which are not necessarily entanglement witnesses. We show that these sudden vanishings are universal phenomena and can be observed: (i) not only for two- or multi-mode but also for single-mode nonclassical fields, (ii) not solely for dissipative systems, and (iii) at evolution times which are usually different from those of sudden vanishings and reappearances of quantum entanglement.Comment: 10 pages, 3 figure

    Magnetic Breakdown in the electron-doped cuprate superconductor Nd2x_{2-x}Cex_xCuO4_4: the reconstructed Fermi surface survives in the strongly overdoped regime

    Full text link
    We report on semiclassical angle-dependent magnetoresistance oscillations (AMRO) and the Shubnikov-de Haas effect in the electron-overdoped cuprate superconductor Nd2x_{2-x}Cex_xCuO4_4. Our data provide convincing evidence for magnetic breakdown in the system. This shows that a reconstructed multiply-connected Fermi surface persists, at least at strong magnetic fields, up to the highest doping level of the superconducting regime. Our results suggest an intimate relation between translational symmetry breaking and the superconducting pairing in the electron-doped cuprate superconductors.Comment: 5 pages, 4 figures, submitted to PR

    Fermi-surface topology of the iron pnictide LaFe2_2P2_2

    Full text link
    We report on a comprehensive de Haas--van Alphen (dHvA) study of the iron pnictide LaFe2_2P2_2. Our extensive density-functional band-structure calculations can well explain the measured angular-dependent dHvA frequencies. As salient feature, we observe only one quasi-two-dimensional Fermi-surface sheet, i.e., a hole-like Fermi-surface cylinder around Γ\Gamma, essential for s±s_\pm pairing, is missing. In spite of considerable mass enhancements due to many-body effects, LaFe2_2P2_2 shows no superconductivity. This is likely caused by the absence of any nesting between electron and hole bands.Comment: 5 pages, 4 figure

    Two-gap and paramagnetic pair-breaking effects on upper critical field of SmFeAsO0.85_{0.85} and SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals

    Full text link
    We investigated the temperature dependence of the upper critical field [Hc2(T)H_{c2}(T)] of fluorine-free SmFeAsO0.85_{0.85} and fluorine-doped SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals by measuring the resistive transition in low static magnetic fields and in pulsed fields up to 60 T. Both crystals show that Hc2(T)H_{c2}(T)'s along the c axis [Hc2c(T)H_{c2}^c(T)] and in an abab-planar direction [Hc2ab(T)H_{c2}^{ab}(T)] exhibit a linear and a sublinear increase, respectively, with decreasing temperature below the superconducting transition. Hc2(T)H_{c2}(T)'s in both directions deviate from the conventional one-gap Werthamer-Helfand-Hohenberg theoretical prediction at low temperatures. A two-gap nature and the paramagnetic pair-breaking effect are shown to be responsible for the temperature-dependent behavior of Hc2cH_{c2}^c and Hc2abH_{c2}^{ab}, respectively.Comment: 21 pages, 8 figure

    Thermal Detection of Turbulent and Laminar Dissipation in Vortex Front Motion

    Full text link
    We report on direct measurements of the energy dissipated in the spin-up of the superfluid component of 3He-B. A vortex-free sample is prepared in a cylindrical container, where the normal component rotates at constant angular velocity. At a temperature of 0.20Tc, seed vortices are injected into the system using the shear-flow instability at the interface between 3He-B and 3He-A. These vortices interact and create a turbulent burst, which sets a propagating vortex front into motion. In the following process, the free energy stored in the initial vortex-free state is dissipated leading to the emission of thermal excitations, which we observe with a bolometric measurement. We find that the turbulent front contains less than the equilibrium number of vortices and that the superfluid behind the front is partially decoupled from the reference frame of the container. The final equilibrium state is approached in the form of a slow laminar spin-up as demonstrated by the slowly decaying tail of the thermal signal.Comment: 12 pages, 5 figures, to appear in Journal of Low Temperature Physic

    A lens-coupled scintillation counter in cryogenic environment

    Full text link
    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8mm diameter multiclad fiber and a 1mm active area G-APD the coupling efficiency of the "lens light guide" is about 50%. A reliable performance of the detector down to 3K is demonstrated.Comment: 14 pages, 11 figure
    corecore