459 research outputs found
Predictions of bond percolation thresholds for the kagom\'e and Archimedean lattices
Here we show how the recent exact determination of the bond percolation
threshold for the martini lattice can be used to provide approximations to the
unsolved kagom\'e and (3,12^2) lattices. We present two different methods, one
of which provides an approximation to the inhomogeneous kagom\'e and (3,12^2)
bond problems, and the other gives estimates of for the homogeneous
kagom\'e (0.5244088...) and (3,12^2) (0.7404212...) problems that respectively
agree with numerical results to five and six significant figures.Comment: 4 pages, 5 figure
Critical surfaces for general inhomogeneous bond percolation problems
We present a method of general applicability for finding exact or accurate
approximations to bond percolation thresholds for a wide class of lattices. To
every lattice we sytematically associate a polynomial, the root of which in
is the conjectured critical point. The method makes the correct
prediction for every exactly solved problem, and comparison with numerical
results shows that it is very close, but not exact, for many others. We focus
primarily on the Archimedean lattices, in which all vertices are equivalent,
but this restriction is not crucial. Some results we find are kagome:
, , ,
, , :
. The results are generally within of numerical
estimates. For the inhomogeneous checkerboard and bowtie lattices, errors in
the formulas (if they are not exact) are less than .Comment: Submitted to J. Stat. Mec
Efficient Monte Carlo algorithm and high-precision results for percolation
We present a new Monte Carlo algorithm for studying site or bond percolation
on any lattice. The algorithm allows us to calculate quantities such as the
cluster size distribution or spanning probability over the entire range of site
or bond occupation probabilities from zero to one in a single run which takes
an amount of time scaling linearly with the number of sites on the lattice. We
use our algorithm to determine that the percolation transition occurs at
occupation probability 0.59274621(13) for site percolation on the square
lattice and to provide clear numerical confirmation of the conjectured
4/3-power stretched-exponential tails in the spanning probability functions.Comment: 8 pages, including 3 postscript figures, minor corrections in this
version, plus updated figures for the position of the percolation transitio
Precise determination of the bond percolation thresholds and finite-size scaling corrections for the s.c., f.c.c., and b.c.c. lattices
Extensive Monte-Carlo simulations were performed to study bond percolation on
the simple cubic (s.c.), face-centered cubic (f.c.c.), and body-centered cubic
(b.c.c.) lattices, using an epidemic kind of approach. These simulations
provide very precise values of the critical thresholds for each of the
lattices: pc(s.c.) = 0.248 812 6(5), pc(f.c.c.) = 0.120 163 5(10), and
pc(b.c.c.) = 0.180 287 5(10). For p close to pc, the results follow the
expected finite-size and scaling behavior, with values for the Fisher exponent
(2.189(2)), the finite-size correction exponent (0.64(2)), and
the scaling function exponent (0.445(1)) confirmed to be universal.Comment: 16 pgs, 7 figures, LaTeX, to be published in Phys. Rev.
Determination of the bond percolation threshold for the Kagome lattice
The hull-gradient method is used to determine the critical threshold for bond
percolation on the two-dimensional Kagome lattice (and its dual, the dice
lattice). For this system, the hull walk is represented as a self-avoiding
trail, or mirror-model trajectory, on the (3,4,6,4)-Archimedean tiling lattice.
The result pc = 0.524 405 3(3) (one standard deviation of error) is not
consistent with the previously conjectured values.Comment: 10 pages, TeX, Style file iopppt.tex, to be published in J. Phys. A.
in August, 199
Recent advances and open challenges in percolation
Percolation is the paradigm for random connectivity and has been one of the
most applied statistical models. With simple geometrical rules a transition is
obtained which is related to magnetic models. This transition is, in all
dimensions, one of the most robust continuous transitions known. We present a
very brief overview of more than 60 years of work in this area and discuss
several open questions for a variety of models, including classical, explosive,
invasion, bootstrap, and correlated percolation
Exact Site Percolation Thresholds Using the Site-to-Bond and Star-Triangle Transformations
I construct a two-dimensional lattice on which the inhomogeneous site
percolation threshold is exactly calculable and use this result to find two
more lattices on which the site thresholds can be determined. The primary
lattice studied here, the ``martini lattice'', is a hexagonal lattice with
every second site transformed into a triangle. The site threshold of this
lattice is found to be , while the others have and
. This last solution suggests a possible approach to establishing
the bound for the hexagonal site threshold, . To derive these
results, I solve a correlated bond problem on the hexagonal lattice by use of
the star-triangle transformation and then, by a particular choice of
correlations, solve the site problem on the martini lattice.Comment: 12 pages, 10 figures. Submitted to Physical Review
Self-Organized Dynamical Equilibrium in the Corrosion of Random Solids
Self-organized criticality is characterized by power law correlations in the
non-equilibrium steady state of externally driven systems. A dynamical system
proposed here self-organizes itself to a critical state with no characteristic
size at ``dynamical equilibrium''. The system is a random solid in contact with
an aqueous solution and the dynamics is the chemical reaction of corrosion or
dissolution of the solid in the solution. The initial difference in chemical
potential at the solid-liquid interface provides the driving force. During time
evolution, the system undergoes two transitions, roughening and
anti-percolation. Finally, the system evolves to a dynamical equilibrium state
characterized by constant chemical potential and average cluster size. The
cluster size distribution exhibits power law at the final equilibrium state.Comment: 11 pages, 5 figure
Numerical study of a first-order irreversible phase transition in a CO+NO catalyzed reaction model
The first-order irreversible phase transitions (IPT) of the Yaldran-Khan
model (Yaldran-Khan, J. Catal. 131, 369, 1991) for the CO+NO reaction is
studied using the constant coverage (CC) ensemble and performing epidemic
simulations. The CC method allows the study of hysteretic effects close to
coexistence as well as the location of both the upper spinodal point and the
coexistence point. Epidemic studies show that at coexistence the number of
active sites decreases according to a (short-time) power law followed by a
(long-time) exponential decay. It is concluded that first-order IPT's share
many characteristic of their reversible counterparts, such as the development
of short ranged correlations, hysteretic effects, metastabilities, etc.Comment: 17 pages, 10 figure
The Largest Cluster in Subcritical Percolation
The statistical behavior of the size (or mass) of the largest cluster in
subcritical percolation on a finite lattice of size is investigated (below
the upper critical dimension, presumably ). It is argued that as the cumulative distribution function converges to the Fisher-Tippett
(or Gumbel) distribution in a certain weak sense (when suitably
normalized). The mean grows like , where is a
``crossover size''. The standard deviation is bounded near with persistent fluctuations due to discreteness. These
predictions are verified by Monte Carlo simulations on square lattices of
up to 30 million sites, which also reveal finite-size scaling. The results are
explained in terms of a flow in the space of probability distributions as . The subcritical segment of the physical manifold ()
approaches a line of limit cycles where the flow is approximately described by
a ``renormalization group'' from the classical theory of extreme order
statistics.Comment: 16 pages, 5 figs, expanded version to appear in Phys Rev
- …