459 research outputs found

    Predictions of bond percolation thresholds for the kagom\'e and Archimedean (3,122)(3,12^2) lattices

    Full text link
    Here we show how the recent exact determination of the bond percolation threshold for the martini lattice can be used to provide approximations to the unsolved kagom\'e and (3,12^2) lattices. We present two different methods, one of which provides an approximation to the inhomogeneous kagom\'e and (3,12^2) bond problems, and the other gives estimates of pcp_c for the homogeneous kagom\'e (0.5244088...) and (3,12^2) (0.7404212...) problems that respectively agree with numerical results to five and six significant figures.Comment: 4 pages, 5 figure

    Critical surfaces for general inhomogeneous bond percolation problems

    Full text link
    We present a method of general applicability for finding exact or accurate approximations to bond percolation thresholds for a wide class of lattices. To every lattice we sytematically associate a polynomial, the root of which in [0,1][0,1] is the conjectured critical point. The method makes the correct prediction for every exactly solved problem, and comparison with numerical results shows that it is very close, but not exact, for many others. We focus primarily on the Archimedean lattices, in which all vertices are equivalent, but this restriction is not crucial. Some results we find are kagome: pc=0.524430...p_c=0.524430..., (3,122):pc=0.740423...(3,12^2): p_c=0.740423..., (33,42):pc=0.419615...(3^3,4^2): p_c=0.419615..., (3,4,6,4):pc=0.524821...(3,4,6,4):p_c=0.524821..., (4,82):pc=0.676835...(4,8^2):p_c=0.676835..., (32,4,3,4)(3^2,4,3,4): pc=0.414120...p_c=0.414120... . The results are generally within 10510^{-5} of numerical estimates. For the inhomogeneous checkerboard and bowtie lattices, errors in the formulas (if they are not exact) are less than 10610^{-6}.Comment: Submitted to J. Stat. Mec

    Efficient Monte Carlo algorithm and high-precision results for percolation

    Full text link
    We present a new Monte Carlo algorithm for studying site or bond percolation on any lattice. The algorithm allows us to calculate quantities such as the cluster size distribution or spanning probability over the entire range of site or bond occupation probabilities from zero to one in a single run which takes an amount of time scaling linearly with the number of sites on the lattice. We use our algorithm to determine that the percolation transition occurs at occupation probability 0.59274621(13) for site percolation on the square lattice and to provide clear numerical confirmation of the conjectured 4/3-power stretched-exponential tails in the spanning probability functions.Comment: 8 pages, including 3 postscript figures, minor corrections in this version, plus updated figures for the position of the percolation transitio

    Precise determination of the bond percolation thresholds and finite-size scaling corrections for the s.c., f.c.c., and b.c.c. lattices

    Full text link
    Extensive Monte-Carlo simulations were performed to study bond percolation on the simple cubic (s.c.), face-centered cubic (f.c.c.), and body-centered cubic (b.c.c.) lattices, using an epidemic kind of approach. These simulations provide very precise values of the critical thresholds for each of the lattices: pc(s.c.) = 0.248 812 6(5), pc(f.c.c.) = 0.120 163 5(10), and pc(b.c.c.) = 0.180 287 5(10). For p close to pc, the results follow the expected finite-size and scaling behavior, with values for the Fisher exponent tautau (2.189(2)), the finite-size correction exponent omegaomega (0.64(2)), and the scaling function exponent sigmasigma (0.445(1)) confirmed to be universal.Comment: 16 pgs, 7 figures, LaTeX, to be published in Phys. Rev.

    Determination of the bond percolation threshold for the Kagome lattice

    Full text link
    The hull-gradient method is used to determine the critical threshold for bond percolation on the two-dimensional Kagome lattice (and its dual, the dice lattice). For this system, the hull walk is represented as a self-avoiding trail, or mirror-model trajectory, on the (3,4,6,4)-Archimedean tiling lattice. The result pc = 0.524 405 3(3) (one standard deviation of error) is not consistent with the previously conjectured values.Comment: 10 pages, TeX, Style file iopppt.tex, to be published in J. Phys. A. in August, 199

    Recent advances and open challenges in percolation

    Full text link
    Percolation is the paradigm for random connectivity and has been one of the most applied statistical models. With simple geometrical rules a transition is obtained which is related to magnetic models. This transition is, in all dimensions, one of the most robust continuous transitions known. We present a very brief overview of more than 60 years of work in this area and discuss several open questions for a variety of models, including classical, explosive, invasion, bootstrap, and correlated percolation

    Exact Site Percolation Thresholds Using the Site-to-Bond and Star-Triangle Transformations

    Full text link
    I construct a two-dimensional lattice on which the inhomogeneous site percolation threshold is exactly calculable and use this result to find two more lattices on which the site thresholds can be determined. The primary lattice studied here, the ``martini lattice'', is a hexagonal lattice with every second site transformed into a triangle. The site threshold of this lattice is found to be 0.764826...0.764826..., while the others have 0.618034...0.618034... and 1/21/\sqrt{2}. This last solution suggests a possible approach to establishing the bound for the hexagonal site threshold, pc<1/2p_c<1/\sqrt{2}. To derive these results, I solve a correlated bond problem on the hexagonal lattice by use of the star-triangle transformation and then, by a particular choice of correlations, solve the site problem on the martini lattice.Comment: 12 pages, 10 figures. Submitted to Physical Review

    Self-Organized Dynamical Equilibrium in the Corrosion of Random Solids

    Full text link
    Self-organized criticality is characterized by power law correlations in the non-equilibrium steady state of externally driven systems. A dynamical system proposed here self-organizes itself to a critical state with no characteristic size at ``dynamical equilibrium''. The system is a random solid in contact with an aqueous solution and the dynamics is the chemical reaction of corrosion or dissolution of the solid in the solution. The initial difference in chemical potential at the solid-liquid interface provides the driving force. During time evolution, the system undergoes two transitions, roughening and anti-percolation. Finally, the system evolves to a dynamical equilibrium state characterized by constant chemical potential and average cluster size. The cluster size distribution exhibits power law at the final equilibrium state.Comment: 11 pages, 5 figure

    Numerical study of a first-order irreversible phase transition in a CO+NO catalyzed reaction model

    Full text link
    The first-order irreversible phase transitions (IPT) of the Yaldran-Khan model (Yaldran-Khan, J. Catal. 131, 369, 1991) for the CO+NO reaction is studied using the constant coverage (CC) ensemble and performing epidemic simulations. The CC method allows the study of hysteretic effects close to coexistence as well as the location of both the upper spinodal point and the coexistence point. Epidemic studies show that at coexistence the number of active sites decreases according to a (short-time) power law followed by a (long-time) exponential decay. It is concluded that first-order IPT's share many characteristic of their reversible counterparts, such as the development of short ranged correlations, hysteretic effects, metastabilities, etc.Comment: 17 pages, 10 figure

    The Largest Cluster in Subcritical Percolation

    Full text link
    The statistical behavior of the size (or mass) of the largest cluster in subcritical percolation on a finite lattice of size NN is investigated (below the upper critical dimension, presumably dc=6d_c=6). It is argued that as NN \to \infty the cumulative distribution function converges to the Fisher-Tippett (or Gumbel) distribution eeze^{-e^{-z}} in a certain weak sense (when suitably normalized). The mean grows like sξlogNs_\xi^* \log N, where sξ(p)s_\xi^*(p) is a ``crossover size''. The standard deviation is bounded near sξπ/6s_\xi^* \pi/\sqrt{6} with persistent fluctuations due to discreteness. These predictions are verified by Monte Carlo simulations on d=2d=2 square lattices of up to 30 million sites, which also reveal finite-size scaling. The results are explained in terms of a flow in the space of probability distributions as NN \to \infty. The subcritical segment of the physical manifold (0<p<pc0 < p < p_c) approaches a line of limit cycles where the flow is approximately described by a ``renormalization group'' from the classical theory of extreme order statistics.Comment: 16 pages, 5 figs, expanded version to appear in Phys Rev
    corecore