9,935 research outputs found

    Regulating Eternal Inflation II: The Great Divide

    Full text link
    In a previous paper, two of the authors presented a "regulated" picture of eternal inflation. This picture both suggested and drew support from a conjectured discontinuity in the amplitude for tunneling from positive to negative vacuum energy, as the positive vacuum energy was sent to zero; analytic and numerical arguments supporting this conjecture were given. Here we show that this conjecture is false, but in an interesting way. There are no cases where tunneling amplitudes are discontinuous at vanishing cosmological constant; rather, the space of potentials separates into two regions. In one region decay is strongly suppressed, and the proposed picture of eternal inflation remains viable; sending the (false) vacuum energy to zero in this region results in an absolutely stable asymptotically flat space. In the other region, we argue that the space-time at vanishing cosmological constant is unstable, but not asymptotically Minkowski. The consequences of our results for theories of supersymmetry breaking are unchanged.Comment: JHEP3, 19 Pages, 7 Figure

    Evolution of the 1-mlb mercury ion thruster subsystem

    Get PDF
    The developmental history, performance, and major lifetests of each component of the present 1-mlb (4.5 mN) thruster system are traced over the past 10 years. The 1-mlb thruster subsystem consists of an 8 cm diameter ion thruster mounted on 2 axis gimbals, a mercury propellant tank, a power electronics unit, a controller/digital interface unit, and necessary electrical harnesses plus propellant tankage and feed lines

    An 8-cm electron bombardment thruster for auxiliary propulsion

    Get PDF
    Thruster size, beam current level, and specific impulse trade-offs are considered for mercury electron bombardment ion thrusters to be used for north-south station keeping of geosynchronous spacecraft. An 8-cm diameter thruster operating at 2750 seconds specific impulse at thrust levels of 4.4 mN (1 m1b) to 8.9 mN (2 m6b) with a design life of 20,000 hours and 10,000 cycles is being developed. The thruster will have a dished two-grid system capable of thrust vectoring of + or - 10 degrees in two orthogonal directions. A preliminary thruster has been fabricated and tested; thruster performance characteristics have been determined at 4.45, 6.68, and 8.90 millinewtons

    High performance auxiliary-propulsion ion thruster with ion-machined accelerator grid

    Get PDF
    An improvement in thruster performance was achieved by reducing the diameter of the accelerator grid holes. The smaller accelerator grid holes resulted in a reduction in neutral mercury atoms escaping the discharge chamber, which in turn enhanced the discharge propellant utilization from approximately 68 percent to 92 percent. The accelerator grids were fabricated by ion machining with an 8-centimeter-diameter thruster, and the screen grid holes individually focused ion beamlets onto the blank accelerator grid. The resulting accelerator grid holes are less than 1.12 millimeters in diameter, while previously used accelerator grids had hole diameters of 1.69 millimeters. The thruster could be operated with the small-hole accelerator grid at neutralizer potential

    High Temperature Limit of the N=2 N= 2 IIA Matrix Model

    Get PDF
    The high temperature limit of a system of two D-0 branes is investigated. The partition function can be expressed as a power series in ÎČ\beta (inverse temperature). The leading term in the high temperature expression of the partition function and effective potential is calculated {\em exactly}. Physical quantities like the mean square separation can also be exactly determined in the high temperature limit. We comment on SU(3) IIB matrix model and the difficulties to study it.Comment: Lattice 2000 (Gravity and Matrix Models

    Interacting Strings in Matrix String Theory

    Get PDF
    It is here explained how the Green-Schwarz superstring theory arises from Matrix String Theory. This is obtained as the strong YM-coupling limit of the theory expanded around its BPS instantonic configurations, via the identification of the interacting string diagram with the spectral curve of the relevant configuration. Both the GS action and the perturbative weight gs−χg_s^{-\chi}, where χ\chi is the Euler characteristic of the world-sheet surface and gsg_s the string coupling, are obtained.Comment: 11 pages, no figures, two references adde

    de Sitter Vacua, Renormalization and Locality

    Get PDF
    We analyze the renormalization properties of quantum field theories in de Sitter space and show that only two of the maximally invariant vacuum states of free fields lead to consistent perturbation expansions. One is the Euclidean vacuum, and the other can be viewed as an analytic continuation of Euclidean functional integrals on RPdRP^d. The corresponding Lorentzian manifold is the future half of global de Sitter space with boundary conditions on fields at the origin of time. We argue that the perturbation series in this case has divergences at the origin, which render the future evolution of the system indeterminate without a better understanding of high energy physics.Comment: JHEP Latex, 13 pages, v2. references adde

    The Number of States of Two Dimensional Critical String Theory

    Get PDF
    We discuss string theory vacua which have the wrong number of spacetime dimensions, and give a crude argument that vacua with more than four large dimensions are improbable. We then turn to two dimensional vacua, which naively appear to violate Bekenstein's entropy principle. A classical analysis shows that the naive perturbative counting of states is unjustified. All excited states of the system have strong coupling singularities which prevent us from concluding that they really exist. A speculative interpretation of the classical solutions suggests only a finite number of states will be found in regions bounded by a finite area. We also argue that the vacuum degeneracy of two dimensional classical string theory is removed in quantum mechanics. The system appears to be in a Kosterlitz-Thouless phase. This leads to the conclusion that it is also improbable to have only two large spacetime dimensions in string theory. However, we note that, unlike our argument for high dimensions, our conclusions about the ground state have neglected two dimensional quantum gravitational effects, and are at best incomplete.Comment: 12 pages, harvma

    Matrix Theory Description of Schwarzschild Black Holes in the Regime N >> S

    Get PDF
    We study the description of Schwarzschild black holes, of entropy S, within matrix theory in the regime N≄S≫1N \ge S \gg 1. We obtain the most general matrix theory equation of state by requiring that black holes admit a description within this theory. It has a recognisable form in various cases. In some cases a D dimensional black hole can plausibly be thought of as a D~=D+1\tilde{D} = D + 1 dimensional black hole, described by another auxiliary matrix theory, but in its N~∌S\tilde{N} \sim S regime. We find what appears to be a matrix theory generalisation to higher dynamical branes of the normalisation of dynamical string tension, seen in other contexts. We discuss a further possible generalisation of the matrix theory equation of state. In a special case, it is governed by N3N^3 dynamical degrees of freedom.Comment: 22 pages. Latex fil
    • 

    corecore