621 research outputs found

    A highly efficient simulation technique for piezoelectric energy harvesters

    Get PDF
    This paper presents a new numerical technique which is aimed at obtaining fast and accurate simulations of piezoelectric beams, used in inertial energy harvesting MEMS. The execution of numerical analyses is greatly important in order to predict the actual behaviour of MEMS device and to carry out the optimization process on the basis of Design of Experiments (DOE) techniques. In this paper, a refined, yet simple, model is proposed with reference to the multi-physics problem of piezoelectric energy harvesting by means of laminate cantilevers. The proposed model is calibrated and validated with reference to 3D finite element analyses

    Numerical and experimental evaluation of the magnetic interaction for frequency up-conversion in piezoelectric vibration energy harvesters

    Get PDF
    The purpose of this work is to improve the modelling process for the application of permanent magnets in a frequency up-conversion (FuC) mechanism for piezoelectric energy harvesters. More specifically, the aim is to avoid the burdensome finite element analyses (FEA) in the framework of electromechanical devices design. The analytical calculations are compared with experimental tests conducted by an ad-hoc set up and with FEA. After investigations on the interaction, an application of FuC mechanism is proposed on a meso-scale case study in which a low frequency seismic mass (LFM) interacts non-linearly, due to magnetic field, with an high frequency piezoelectric vibration energy harvester (PVEH). Numerical simulations have been carried out in the time domain (step-by-step analysis) under a harmonic low-frequency input acceleration signal. The peculiar behavior, due to non-linear dynamics, is investigated in both the repulsive and the attractive configurations of the magnets. The results confirm the effectiveness of magnetic FuC and show that the repulsive case allows the device to recover a larger amount of energy than the attractive configuration

    Application of optimally-shaped phononic crystals to reduce anchor losses of MEMS resonators

    Get PDF
    This work is focused on the application of Phononic Crystals to reduce anchor losses of MEMS contour mode resonators. Anchor losses dominates the losses in these type of released resonators at low frequency and at low temperature. The use of phononic crystals, intended as finite-periodic distribution of holes in the anchor, is fully compatible with fabrication processes and moreover it is easy to implement. The numerical results obtained in this work show how the use of these crystals can significantly reduce the anchor losses: without the use of the crystal the Q-factor related to only anchor losses is 344, with the use of the crystal it can reach up to 105900
    • …
    corecore