501 research outputs found
Underground CO2 storage: demonstrating regulatory conformance by convergence of history-matched modeled and observed CO2 plume behavior using Sleipner time-lapse seismics
One of the three key regulatory requirements in Europe for transfer of storage site liability is to demonstrate conformity between predictive models of reservoir performance and monitoring observations. This is a challenging requirement because a perfect and unique match between observed and modeled behavior is near impossible to achieve. This study takes the time-lapse seismic monitoring data from the Sleipner storage operation to demonstrate that as more seismic data becomes available with time, predictive models can be matched more accurately to observations and become more reliable predictors of future performance. Six simple performance measures were defined: plume footprint area, maximum lateral migration distance of CO2 from the injection point, area of CO2 accumulation trapped at top reservoir, volume of CO2 accumulation trapped at top reservoir, area of all CO2 layers summed, and spreading co-efficient. Model scenarios were developed to predict plume migration up to 2008. Scenarios were developed for 1996 (baseline), 2001, and 2006 conditions, with models constrained by the information available at those times, and compared with monitoring datasets obtained up to 2008. The 1996 predictive range did generally encompass the future observed plume behavior, but with such a wide range of uncertainty as to render it of only marginal practical use. The 2001 predictions (which used the 1999 and 2001 seismic monitoring datasets) had a much lower uncertainty range, with the 2006 uncertainties somewhat lower again. There are still deficiencies in the actual quality of match but a robust convergence, with time, of predicted and observed models is clearly demonstrated. We propose modeling-monitoring convergence as a generic approach to demonstrating conformance
An improved history-match for layer spreading within the Sleipner plume including thermal propagation effects
The Sleipner CO2 storage operation has been injecting CO2 since 1996, and the growth of the plume has been intensively monitored using time-lapse seismic techniques. Detailed history-matching of the topmost CO2 layer has proven challenging. This paper summarizes results from a series of flow simulations examining two key parameters affecting CO2 mobility: permeability heterogeneity and fluid temperatures within the plume. The best match to the observed distribution of CO2 was achieved by including high permeability channels in the reservoir flow model, as observed on seismic data. Thermal models suggests that CO2 enters the top sand layer 7 °C warmer than the ambient reservoir. The resulting reduction in the density and viscosity of CO2 does not significantly improve the fit between seismic and simulation
CO2 storage monitoring: leakage detection and measurement in subsurface volumes from 3D seismic data at Sleipner
Demonstrating secure containment is a key plank of CO2 storage monitoring. Here we use the time-lapse 3D seismic surveys at the Sleipner CO2 storage site to assess their ability to provide robust and uniform three-dimensional spatial surveillance of the Storage Complex and provide a quantitative leakage detection tool. We develop a spatial-spectral methodology to determine the actual detection limits of the datasets which takes into account both the reflectivity of a thin CO2 layer and also its lateral extent. Using a tuning relationship to convert reflectivity to layer thickness, preliminary analysis indicates that, at the top of the Utsira reservoir, CO2 accumulations with pore volumes greater than about 3000 m3 should be robustly detectable for layer thicknesses greater than one metre, which will generally be the case. Making the conservative assumption of full CO2 saturation, this pore volume corresponds to a CO2 mass detection threshold of around 2100 tonnes. Within the overburden, at shallower depths, CO2 becomes progressively more reflective, less dense, and correspondingly more detectable, as it passes from the dense phase into a gaseous state. Our preliminary analysis indicates that the detection threshold falls to around 950 tonnes of CO2 at 590 m depth, and to around 315 tonnes at 490 m depth, where repeatability noise levels are particularly low. Detection capability can be equated to the maximum allowable leakage rate consistent with a storage site meeting its greenhouse gas emissions mitigation objective. A number of studies have suggested that leakage rates around 0.01% per year or less would ensure effective mitigation performance. So for a hypothetical large-scale storage project, the detection capability of the Sleipner seismics would far exceed that required to demonstrate the effective mitigation leakage limit. More generally it is likely that well-designed 3D seismic monitoring systems will have robust 3D detection capability significantly superior to what is required to prove greenhouse gas mitigation efficacy
Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah
Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ∼1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage sit
Impact of a quadrivalent meningococcal ACWY glycoconjugate or a serogroup B meningococcal vaccine on meningococcal carriage: an observer-blind, phase 3 randomised clinical trial
Background: Meningococcal conjugate vaccines protect individuals directly, but also confer herd protection by interrupting carriage transmission. This Phase III observer-blind, randomised, controlled study evaluated the effects of meningococcal quadrivalent (ACWY) glycoconjugate (MenACWY-CRM) or serogroup B (4CMenB) vaccination on meningococcal carriage rates in young adults.
Methods: University students (aged 18–24 years) from ten sites in England were randomised to receive two vaccinations one month apart: two doses of Japanese Encephalitis vaccine (controls), two doses of 4CMenB (4CMenB), or one dose of MenACWY-CRM then placebo (MenACWY-CRM). Meningococci were isolated from oropharyngeal swabs collected before vaccination and at five scheduled intervals over one year. Primary analysis was cross-sectional carriage one month after the vaccine course; secondary analyses included comparison of carriage at any time point after primary analysis until study termination.
Findings: 2954 subjects were randomised (control, n=987; 4CMenB, n=988; MenACWY-CRM, n=979); approximately one-third of each group was positive for meningococcal carriage at study entry. By one month, there was no significant difference in carriage between controls and 4CMenB (Odds Ratios (OR) [95% CI]; 1·2 [0·8−1·7]) or MenACWY-CRM (OR [95% CI], 0·9 [0·6–1·3]) groups. From three months after dose two, 4CMenB vaccination resulted in significantly lower carriage of any meningococcal strain (calculated efficacy 18·2% [95% CI: 3·4–30·8]) and capsular groups BCWY (calculated efficacy 26·6% [95% CI: 10·5–39·9]) compared to control vaccination. Significantly lower carriage rates were also observed in the MenACWY-CRM group compared with controls: calculated efficacies 39·0% [95%CI: 17·3-55·0] and 36.2% [95%CI: 15·6-51·7] for serogroups Y and CWY, respectively.
Interpretation: MenACWY-CRM and 4CMenB vaccines reduced meningococcal carriage rates over 12 months post-vaccination and, therefore, may affect transmission where widely implemented
The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry
The closest tensors of higher symmetry classes are derived in explicit form
for a given elasticity tensor of arbitrary symmetry. The mathematical problem
is to minimize the elastic length or distance between the given tensor and the
closest elasticity tensor of the specified symmetry. Solutions are presented
for three distance functions, with particular attention to the Riemannian and
log-Euclidean distances. These yield solutions that are invariant under
inversion, i.e., the same whether elastic stiffness or compliance are
considered. The Frobenius distance function, which corresponds to common
notions of Euclidean length, is not invariant although it is simple to apply
using projection operators. A complete description of the Euclidean projection
method is presented. The three metrics are considered at a level of detail far
greater than heretofore, as we develop the general framework to best fit a
given set of moduli onto higher elastic symmetries. The procedures for finding
the closest elasticity tensor are illustrated by application to a set of 21
moduli with no underlying symmetry.Comment: 48 pages, 1 figur
Artificial Intelligence in Swedish Policies::Values, benefits, considerations and risks
Part 4: AI, Data Analytics and Automated Decision MakingInternational audienceArtificial intelligence (AI) is said to be the next big phase in digitalization. There is a global ongoing race to develop, implement and make use of AI in both the private and public sector. The many responsibilities of governments in this race are complicated and cut across a number of areas. Therefore, it is important that the use of AI supports these diverse aspects of governmental commitments and values. The aim of this paper is to analyze how AI is portrayed in Swedish policy documents and what values are attributed to the use of AI. We analyze Swedish policy documents and map benefits, considerations and risks with AI into different value ideals, based on an established e-government value framework. We conclude that there is a discrepancy in the policy level discourse on the use of AI between different value ideals. Our findings show that AI is strongly associated with improving efficiency and service quality in line with previous e-government policy studies. Interestingly, few benefits are highlighted concerning engagement of citizens in policy making. A more nuanced view on AI is needed for creating realistic expectations on how this technology can benefit society
Recommended from our members
Hunting and mountain sheep: Do current harvest practices affect horn growth?
The influence of human harvest on evolution of secondary sexual characteristics has implications for sustainable management of wildlife populations. The phenotypic consequences of selectively removing males with large horns or antlers from ungulate populations have been a topic of heightened concern in recent years. Harvest can affect size of horn-like structures in two ways: (a) shifting age structure toward younger age classes, which can reduce the mean size of horn-like structures, or (b) selecting against genes that produce large, fast-growing males. We evaluated effects of age, climatic and forage conditions, and metrics of harvest on horn size and growth of mountain sheep (Ovis canadensis ssp.) in 72 hunt areas across North America from 1981 to 2016. In 50% of hunt areas, changes in mean horn size during the study period were related to changes in age structure of harvested sheep. Environmental conditions explained directional changes in horn growth in 28% of hunt areas, 7% of which did not exhibit change before accounting for effects of the environment. After accounting for age and environment, horn size of mountain sheep was stable or increasing in the majority (similar to 78%) of hunt areas. Age-specific horn size declined in 44% of hunt areas where harvest was regulated solely by morphological criteria, which supports the notion that harvest practices that are simultaneously selective and intensive might lead to changes in horn growth. Nevertheless, phenotypic consequences are not a foregone conclusion in the face of selective harvest; over half of the hunt areas with highly selective and intensive harvest did not exhibit age-specific declines in horn size. Our results demonstrate that while harvest regimes are an important consideration, horn growth of harvested male mountain sheep has remained largely stable, indicating that changes in horn growth patterns are an unlikely consequence of harvest across most of North America.Utah Division of Wildlife Resources; National Wild Sheep Foundation (WSF); Wyoming Wild Sheep Foundation; Alberta Wild Sheep Foundation; California Wild Sheep Foundation; Arizona Desert Bighorn Sheep Society; Wyoming Governor's Big Game License Coalition; Iowa Foundation for North American Wild Sheep; Utah Foundation for North American Wild Sheep; Pope and Young ClubOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
- …