671 research outputs found

    Renormalization and Essential Singularity

    Full text link
    In usual dimensional counting, momentum has dimension one. But a function f(x), when differentiated n times, does not always behave like one with its power smaller by n. This inevitable uncertainty may be essential in general theory of renormalization, including quantum gravity. As an example, we classify possible singularities of a potential for the Schr\"{o}dinger equation, assuming that the potential V has at least one C2C^2 class eigen function. The result crucially depends on the analytic property of the eigen function near its 0 point.Comment: 12 pages, no figures, PTPTeX with amsfonts. 2 pages added for detail

    Algebra versus analysis in the theory of flexible polyhedra

    Full text link
    Two basic theorems of the theory of flexible polyhedra were proven by completely different methods: R. Alexander used analysis, namely, the Stokes theorem, to prove that the total mean curvature remains constant during the flex, while I.Kh. Sabitov used algebra, namely, the theory of resultants, to prove that the oriented volume remains constant during the flex. We show that none of these methods can be used to prove the both theorems. As a by-product, we prove that the total mean curvature of any polyhedron in the Euclidean 3-space is not an algebraic function of its edge lengths.Comment: 5 pages, 5 figures; condition (iii) in Theorem 5 is correcte

    Regular vs. classical M\"obius transformations of the quaternionic unit ball

    Full text link
    The regular fractional transformations of the extended quaternionic space have been recently introduced as variants of the classical linear fractional transformations. These variants have the advantage of being included in the class of slice regular functions, introduced by Gentili and Struppa in 2006, so that they can be studied with the useful tools available in this theory. We first consider their general properties, then focus on the regular M\"obius transformations of the quaternionic unit ball B, comparing the latter with their classical analogs. In particular we study the relation between the regular M\"obius transformations and the Poincar\'e metric of B, which is preserved by the classical M\"obius transformations. Furthermore, we announce a result that is a quaternionic analog of the Schwarz-Pick lemma.Comment: 14 page

    On the Semi-Relative Condition for Closed (TOPOLOGICAL) Strings

    Full text link
    We provide a simple lagrangian interpretation of the meaning of the b0b_0^- semi-relative condition in closed string theory. Namely, we show how the semi-relative condition is equivalent to the requirement that physical operators be cohomology classes of the BRS operators acting on the space of local fields {\it covariant} under world-sheet reparametrizations. States trivial in the absolute BRS cohomology but not in the semi-relative one are explicitly seen to correspond to BRS variations of operators which are not globally defined world-sheet tensors. We derive the covariant expressions for the observables of topological gravity. We use them to prove a formula that equates the expectation value of the gravitational descendant of ghost number 4 to the integral over the moduli space of the Weil-Peterson K\"ahler form.Comment: 10 pages, harvmac, CERN-TH-7084/93, GEF-TH-21/199

    Constraints on the form factors for K --> pi l nu and implications for V_us

    Full text link
    Rigorous bounds are established for the expansion coefficients governing the shape of semileptonic K-->pi form factors. The constraints enforced by experimental data from tau-->K pi nu eliminate uncertainties associated with model parameterizations in the determination of |V_us|. The results support the validity of a powerful expansion that can be applied to other semileptonic transitions.Comment: 5 pages, 3 figures; references added, version to appear in Phys. Rev. D alongside hep-ex/060805

    On an inverse problem for anisotropic conductivity in the plane

    Full text link
    Let Ω^R2\hat \Omega \subset \mathbb R^2 be a bounded domain with smooth boundary and σ^\hat \sigma a smooth anisotropic conductivity on Ω^\hat \Omega. Starting from the Dirichlet-to-Neumann operator Λσ^\Lambda_{\hat \sigma} on Ω^\partial \hat \Omega, we give an explicit procedure to find a unique domain Ω\Omega, an isotropic conductivity σ\sigma on Ω\Omega and the boundary values of a quasiconformal diffeomorphism F:Ω^ΩF:\hat \Omega \to \Omega which transforms σ^\hat \sigma into σ\sigma.Comment: 9 pages, no figur

    Fluctuation force exerted by a planar self-avoiding polymer

    Full text link
    Using results from Schramm Loewner evolution (SLE), we give the expression of the fluctuation-induced force exerted by a polymer on a small impenetrable disk, in various 2-dimensional domain geometries. We generalize to two polymers and examine whether the fluctuation force can trap the object into a stable equilibrium. We compute the force exerted on objects at the domain boundary, and the force mediated by the polymer between such objects. The results can straightforwardly be extended to any SLE interface, including Ising, percolation, and loop-erased random walks. Some are relevant for extremal value statistics.Comment: 7 pages, 22 figure

    Monte Carlo study of the hull distribution for the q=1 Brauer model

    Full text link
    We study a special case of the Brauer model in which every path of the model has weight q=1. The model has been studied before as a solvable lattice model and can be viewed as a Lorentz lattice gas. The paths of the model are also called self-avoiding trails. We consider the model in a triangle with boundary conditions such that one of the trails must cross the triangle from a corner to the opposite side. Motivated by similarities between this model, SLE(6) and critical percolation, we investigate the distribution of the hull generated by this trail (the set of points on or surrounded by the trail) up to the hitting time of the side of the triangle opposite the starting point. Our Monte Carlo results are consistent with the hypothesis that for system size tending to infinity, the hull distribution is the same as that of a Brownian motion with perpendicular reflection on the boundary.Comment: 21 pages, 9 figure

    Large fluctuations in stochastic population dynamics: momentum space calculations

    Full text link
    Momentum-space representation renders an interesting perspective to theory of large fluctuations in populations undergoing Markovian stochastic gain-loss processes. This representation is obtained when the master equation for the probability distribution of the population size is transformed into an evolution equation for the probability generating function. Spectral decomposition then brings about an eigenvalue problem for a non-Hermitian linear differential operator. The ground-state eigenmode encodes the stationary distribution of the population size. For long-lived metastable populations which exhibit extinction or escape to another metastable state, the quasi-stationary distribution and the mean time to extinction or escape are encoded by the eigenmode and eigenvalue of the lowest excited state. If the average population size in the stationary or quasi-stationary state is large, the corresponding eigenvalue problem can be solved via WKB approximation amended by other asymptotic methods. We illustrate these ideas in several model examples.Comment: 20 pages, 9 figures, to appear in JSTA

    Nonrelativistic Chern-Simons Vortices on the Torus

    Full text link
    A classification of all periodic self-dual static vortex solutions of the Jackiw-Pi model is given. Physically acceptable solutions of the Liouville equation are related to a class of functions which we term Omega-quasi-elliptic. This class includes, in particular, the elliptic functions and also contains a function previously investigated by Olesen. Some examples of solutions are studied numerically and we point out a peculiar phenomenon of lost vortex charge in the limit where the period lengths tend to infinity, that is, in the planar limit.Comment: 25 pages, 2+3 figures; improved exposition, corrected typos, added one referenc
    corecore