58 research outputs found

    Translation controls the expression level of a chimaeric reporter gene

    Get PDF
    Transcriptional and translational fusions between the reading frame of the β-D-glucuronidase gene (gusA) and the 2′ as well as the 1′ promoter of mannopine synthase (mas), a TR locus of Agrobacterium tumefaciens, were made. The expression of these constructs was studied in the transgenic F1 offspring of independent tobacco transformants at the protein level by assaying for GUS activity and western blot analysis of the GUS protein and at the steady-state mRNA level. In leaves, stems and roots no correlation was found between steady-state levels of GUS mRNA and enzyme activity. In older tissues significantly higher GUS activities were found. This is explained by the stable character of the GUS protein together with an accumulation of protein upon ageing. Three to ten times higher GUS activities were found for in vitro grown plants than for greenhouse-grown plants of the same offspring, despite similar levels of GUS mRNA. Roots from in vitro grown plants display three to ten times higher GUS activities than stems and leaves. In transgenic plants grown in vitro, containing a translational fusion with two AUGs in phase, the initiation of translation in leaf material occurred at both AUGs. Initiation of translation at the first AUG, however, was ten times more frequent. In contrast, initiation in roots from in vitro grown plants occurred exclusively at the second AUG

    Plant-inducible virulence promoter of the Agrobacterium tumefaciens Ti plasmid

    Get PDF
    Agrobacterium tumefaciens is the causative agent of crown gall, a plant tumour that can arise on most species of dicotyledonous plants. The tumour-inducing capacity of the bacterium requires the presence of a large plasmid, designated the Ti plasmid, which itself contains two regions essential for tumour formation-the T(umour)-region and the Vir(ulence)-region. The T-region is transferred to plant cells by an unknown mechanism, and becomes stably integrated into the plant genome. The Vir-region has been identified by transposon mutagenesis, but the DNA of this region has never been detected in tumour lines. However, trans-complementation of Vir mutants indicates that genes of the Vir-region are functional in the bacterium. Moreover, the Vir- and T-regions can be physically separated in A. tumefaciens without loss of tumour-inducing capacity. Seven loci, designated virA-F and virO, have been identified in the Vir-region of the octopine Ti plasmid, but their functions are unknown. As virC mutants in the octopine-type plasmid pTiB6 are invariably avirulent in tests on various plant species, this gene seems to be essential for virulence and we are studying it in detail. We report here that the promoter of virC shows no detectable activity in A. tumefaciens and Escherichia coli K-12 grown in standard medium, but that its activity is induced by a plant product.

    Book reviews

    No full text
    • …
    corecore