3,758 research outputs found
The elevation, slope, and curvature spectra of a wind roughened sea surface
The elevation, slope and curvature spectra are defined as a function of wave number and depend on the friction velocity. There are five wave number ranges of definition called the gravity wave-gravity equilibrium range, the isotropic turbulence range, the connecting range due to Leykin Rosenberg, the capillary range, and the viscous cutoff range. The higher wave number ranges are strongly wind speed dependent, and there is no equilibrium (or saturated) capillary range, at least for winds up to 30 meters/sec. Some properties of the angular variation of the spectra are also found. For high wave numbers, especially in the capillary range, the results are shown to be consistent with the Rayleigh-Rice backscattering theory (Bragg scattering), and certain properties of the angular variation are deduced from backscatter measurements
Some examples of deep structure of the Archean from geophysics
The development of Archean crust remains as one of the significant problems in earth science, and a major unknown concerning Archean terrains is the nature of the deep crust. The character of crust beneath granulite terrains is especially fascinating because granulites are generally interpreted to represent a deep crustal section. Magnetic data from this area can be best modeled with a magnetized wedge of older Archean rocks (granulitic gneisses) underlying the younger Archean greenstone terrain. The dip of the boundary based on magnetic modeling is the same as the dip of the postulated thrust-fault reflection. Thus several lines of evidence indicate that the younger Archean greenstone belt terrain is thrust above the ancient Minnesota Valley gneiss terrain, presumably as the greenstone belt was accreted to the gneiss terrain, so that the dipping reflection represents a suture zone. Seismic data from underneath the granulite-facies Minnesota gneiss terrain shows abundant reflections between 3 and 6 s, or about 9 to 20 km. These are arcuate or dipping multicyclic events indicative of layering
Preliminary S-193 RADSCAT oceanographic data for Skylab 2
There are no author-identified significant results in this report
Renormalization Group Study of the Intrinsic Finite Size Effect in 2D Superconductors
Vortices in a thin-film superconductor interact logarithmically out to a
distance on the order of the two-dimensional (2D) magnetic penetration depth
, at which point the interaction approaches a constant. Thus,
because of the finite , the system exhibits what amounts to an
{\it intrinsic} finite size effect. It is not described by the 2D Coulomb gas
but rather by the 2D Yukawa gas (2DYG). To study the critical behavior of the
2DYG, we map the 2DYG to the massive sine-Gordon model and then perform a
renormalization group study to derive the recursion relations and to verify
that is a relevant parameter. We solve the recursion relations
to study important physical quantities for this system including the
renormalized stiffness constant and the correlation length. We also address the
effect of current on this system to explain why finite size effects are not
more prevalent in experiments given that the 2D magnetic penetration depth is a
relevant parameter.Comment: 8 pages inRevTex, 5 embedded EPS figure
Flux Lattice Melting and Lowest Landau Level Fluctuations
We discuss the influence of lowest Landau level (LLL) fluctuations near
H_{c2}(T) on flux lattice melting in YBaCuO (YBCO). We
show that the specific heat step of the flux lattice melting transition in YBCO
single crystals can be attributed largely to the degrees of freedom associated
with LLL fluctuations. These degrees of freedom have already been shown to
account for most of the latent heat. We also show that these results are a
consequence of the correspondence between flux lattice melting and the onset of
LLL fluctuations.Comment: 4 pages, 2 embedded figure
Ultrasound image attributes of human ovarian dominant follicles during natural and oral contraceptive cycles
BACKGROUND: Computer-assisted analyses were used to examine ultrasound image attributes of human dominant ovarian follicles that developed during natural and oral contraceptive (OC) cycles. We hypothesized that image attributes of natural cycle follicles would quantitatively differ from those in OC cycles and that OC cycle follicles would possess image attributes indicative of atresia. METHODS: Dominant ovarian follicles of 18 clinically normal women were compared using transvaginal ultrasonography for the 7 days before ovulation during a natural cycle (n = 9) or the 7 days before peak estradiol in women using OC (n = 11). Follicles were analyzed using region and line techniques designed to compare the image attributes numerical pixel value (NPV), pixel heterogeneity (PH) and area under the curve (AUC). RESULTS: NPV was higher in OC cycle follicles with region analysis and tended to be higher with line analysis (p = 0.005 and p = 0.06, respectively). No differences were observed in two other image attributes (AUC and PH), measured with either technique, between natural and OC cycle follicles. CONCLUSION: The increased NPV value of OC cycle follicles and lack of differences in PH and AUC values between natural cycle and OC cycle follicles did not support the hypothesis that OC cycle follicles would show ultrasonographically detectable signs of atresia. Image attributes observed in OC cycle follicles were not clearly indicative of atresia nor were they large enough to preclude preovulatory physiologic status in OC cycle follicles
AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
Researchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd
The Current-Temperature Phase Diagram of Layered Superconductors
The behavior of clean layered superconductors in the presence of a finite
electric current and in zero-magnetic field behavior is addressed. The
structure of the current temperature phase diagram and the properties of each
of the four regions will be explained. We will discuss the expected current
voltage and resistance characteristics of each region as well as the effects of
finite size and weak disorder on the phase diagram. In addition, the reason for
which a weakly non-ohmic region exists above the transition temperature will be
explained.Comment: 8 pages (RevTeX), 4 encapsulated postscript figure
The measurement of the winds near the ocean surface with a radiometer-scatterometer on Skylab
The author has identified the following significant results. There were a total of twenty-six passes in the ZLV mode that yielded useful data. Six were in the in-track noncontiguous mode; all others were in the cross-track noncontiguous mode. The wind speed and direction, as effectively determined in a neutral atmosphere at 19.5 m above the sea surface, were found for each cell scanned by S193. It is shown how the passive microwave measurements were used both to compute the attenuation of the radar beam and to determine those cells where the backscatter measurement was suspect. Given the direction of the wind from some independent source, with the typical accuracy of measurement by available meteorological methods, a backscatter measurement at a nadir angle of 50, 43, or 32 deg can be used to compute the speed of the wind averaged over the illuminated area
- …