197 research outputs found

    Effect of structural defects on anomalous ultrasound propagation in solids during second-order phase transitions

    Full text link
    The effect of structural defects on the critical ultrasound attenuation and ultrasound velocity dispersion in Ising-like three-dimensional systems is studied. A field-theoretical description of the dynamic effects of acoustic-wave propagation in solids during phase transitions is performed with allowance for both fluctuation and relaxation attenuation mechanisms. The temperature and frequency dependences of the scaling functions of the attenuation coefficient and the ultrasound velocity dispersion are calculated in a two-loop approximation for pure and structurally disordered systems, and their asymptotic behavior in hydrodynamic and critical regions is separated. As compared to a pure system, the presence of structural defects in it is shown to cause a stronger increase in the sound attenuation coefficient and the sound velocity dispersion even in the hydrodynamic region as the critical temperature is reached. As compared to pure analogs, structurally disordered systems should exhibit stronger temperature and frequency dependences of the acoustic characteristics in the critical region.Comment: 7 RevTeX pages, 4 figure

    Anomalous fluctuations of the condensate in interacting Bose gases

    Full text link
    We find that the fluctuations of the condensate in a weakly interacting Bose gas confined in a box of volume VV follow the law V4/3\sim V^{4/3}. This anomalous behaviour arises from the occurrence of infrared divergencies due to phonon excitations and holds also for strongly correlated Bose superfluids. The analysis is extended to an interacting Bose gas confined in a harmonic trap where the fluctuations are found to exhibit a similar anomaly.Comment: 4 pages, RevTe

    Connecting

    Get PDF
    Helen Walker - More Apt, Connected Title Sheryl Lain - Hey, Teach! Do You Love Me? Matthew B. Ittig - Ask Me Tomorrow Laurence Musgrove - Writing Program Julie O’Connell - The Power of a Slave Narrative Leslie A. Werden - Embracing Chaos Donna Souder-Hodge - Teaching Dachau Tanya R. Cochran, Rasha Diab, Thomas Ferrel, & Beth Godbee - Hanging Out: Cultivating Life-Giving Writing Groups Onlin

    FERMION ZERO MODES AND BLACK-HOLE HYPERMULTIPLETS WITH RIGID SUPERSYMMETRY

    Get PDF
    The gravitini zero modes riding on top of the extreme Reissner-Nordstrom black-hole solution of N=2 supergravity are shown to be normalizable. The gravitini and dilatini zero modes of axion-dilaton extreme black-hole solutions of N=4 supergravity are also given and found to have finite norms. These norms are duality invariant. The finiteness and positivity of the norms in both cases are found to be correlated with the Witten-Israel-Nester construction; however, we have replaced the Witten condition by the pure-spin-3/2 constraint on the gravitini. We compare our calculation of the norms with the calculations which provide the moduli space metric for extreme black holes. The action of the N=2 hypermultiplet with an off-shell central charge describes the solitons of N=2 supergravity. This action, in the Majumdar-Papapetrou multi-black-hole background, is shown to be N=2 rigidly supersymmetric.Comment: 18 pages, LaTe

    Critical behavior of the three-dimensional XY universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional XY universality class. We find alpha=-0.0146(8), gamma=1.3177(5), nu=0.67155(27), eta=0.0380(4), beta=0.3485(2), and delta=4.780(2). We observe a discrepancy with the most recent experimental estimate of alpha; this discrepancy calls for further theoretical and experimental investigations. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods, and high-temperature expansions. Two improved models (with suppressed leading scaling corrections) are selected by Monte Carlo computation. The critical exponents are computed from high-temperature expansions specialized to these improved models. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine the specific-heat amplitude ratio.Comment: 61 pages, 3 figures, RevTe

    Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems

    Full text link
    High-temperature series are computed for a generalized 3d3d Ising model with arbitrary potential. Two specific ``improved'' potentials (suppressing leading scaling corrections) are selected by Monte Carlo computation. Critical exponents are extracted from high-temperature series specialized to improved potentials, achieving high accuracy; our best estimates are: γ=1.2371(4)\gamma=1.2371(4), ν=0.63002(23)\nu=0.63002(23), α=0.1099(7)\alpha=0.1099(7), η=0.0364(4)\eta=0.0364(4), β=0.32648(18)\beta=0.32648(18). By the same technique, the coefficients of the small-field expansion for the effective potential (Helmholtz free energy) are computed. These results are applied to the construction of parametric representations of the critical equation of state. A systematic approximation scheme, based on a global stationarity condition, is introduced (the lowest-order approximation reproduces the linear parametric model). This scheme is used for an accurate determination of universal ratios of amplitudes. A comparison with other theoretical and experimental determinations of universal quantities is presented.Comment: 65 pages, 1 figure, revtex. New Monte Carlo data by Hasenbusch enabled us to improve the determination of the critical exponents and of the equation of state. The discussion of several topics was improved and the bibliography was update

    Noradrenergic Synaptic Function in the Bed Nucleus of the Stria Terminalis Varies in Animal Models of Anxiety and Addiction

    Get PDF
    Lewis rats show increased anxiety-like behaviors and drug consumption compared with Sprague-Dawley rats. Prior work suggests norepinephrine (NE) signaling in the bed nucleus of the stria terminalis (BNST) could have a role in mediating these phenotypes. Here, we investigated NE content and dynamics in the ventral BNST (vBNST) using fast-scan cyclic voltammetry in these two rat strains. We found that NE release evoked by electrical stimulus and its subsequent uptake was dysregulated in the more anxious Lewis rats. Because addiction is a multifaceted disease influenced by both genetic and environmental factors, we hypothesized NE dynamics would vary in these strains after the induction of a physical dependence on morphine. Following naloxone-precipitated morphine withdrawal, NE release and uptake dynamics were not changed in Lewis rats but were significantly altered in Sprague-Dawley rats. The alterations in Sprague-Dawley rats were accompanied by an increase in anxiety-like behavior in those animals as measured with the elevated plus maze. These studies suggest novel mechanisms involved in the development of affective disorders, and highlight the noradrenergic system in the vBNST as a common substrate for the manifestation of pathological anxiety and addiction

    Analytic structure factors and pair-correlation functions for the unpolarized homogeneous electron gas

    Full text link
    We propose a simple and accurate model for the electron static structure factors (and corresponding pair-correlation functions) of the 3D unpolarized homogeneous electron gas. Our spin-resolved pair-correlation function is built up with a combination of analytic constraints and fitting procedures to quantum Monte Carlo data, and, in comparison to previous attempts (i) fulfills more known integral and differential properties of the exact pair-correlation function, (ii) is analytic both in real and in reciprocal space, and (iii) accurately interpolates the newest, extensive diffusion-Monte Carlo data of Ortiz, Harris and Ballone [Phys. Rev. Lett. 82, 5317 (1999)]. This can be of interest for the study of electron correlations of real materials and for the construction of new exchange and correlation energy density functionals.Comment: 14 pages, 5 figures, submitted to Phys. Rev.
    corecore