18,307 research outputs found

    Prediction of mechanical fatigue caused by multiple random excitations

    Get PDF
    A simulation method is presented for the fatigue analysis of automotive and other products that are subjected to multiple random excitations. The method is denoted as frequency domain stress-life fatigue analysis and was implemented in the automotive industry at DAF Trucks N.V. in Eindhoven, The Netherlands. As an example case, a chassis part is analysed. The results of the analysis are consistent with fatigue cracks encountered during testing, which illustrates the effectiveness of the adopted method in the automotive industry

    Development of a Damage Quantification Model for Composite Skin-Stiffener Structures

    Get PDF
    The development of a model-based approach for a damage severity assessment applied on a complex composite skin structure with stiffeners is presented in this paper. Earlier investigations on composite structures with stiffeners revealed that a vibration based structural health monitoring approach, employing the Modal Strain Energy Damage Index (MSE-DI) algorithm can detect and localise delaminations. The next step, performed in the presented part of the research, is to assess the severity of the damage. It is shown that combining results from a fre-quency based analysis and from a modal strain energy based analysis can enhance the quantifica-tion of the severity estimation. This conclusion was drawn by analysing the effect of small masses that were added at a specific location in to mimic a damage, but maintain reversibility of the dam-age. The use of a numerical model to create a virtual test space was found to be valuable for the interpretation of experimental dat

    Vibration based Structural Health Monitoring of a Composite Plate Structure with Multiple Stiffeners

    Get PDF
    A vibration based damage identification method is investigated experimentally.\ud The dynamic response of an intact and a locally damaged 16–layer unidirectional\ud carbon fibre PEKK reinforced plate structure with two stiffener sections is considered.\ud A forced–vibration set–up, including a laser vibrometer system, is employed\ud to measure the dynamic behaviour. The feasibility of the two–dimensional Modal\ud Strain Energy Damage Index algorithm to detect and localize impact induced defects\ud is demonstrated

    Power harvesting in a helicopter lag damper

    Get PDF
    In this paper a new power harvesting application is developed and simulated. Power harvesting is chosen within the European Clean Sky project as a solution to powering in-blade health monitoring systems as opposed to installing an elaborate electrical infrastructure to draw power from and transmit signals to the helicopter body. Local generation of power will allow for a ‘plug and play’ rotor blade and signals may be logged or transmitted wirelessly.\ud The lag damper is chosen to be modified as it provides a well defined loading due to the re-gressive damping characteristic. A piezo electric stack is installed inside the damper rod, effec-tively coupled in series with the damper. Due to the well defined peak force generated in the damper the stack geometry requires a very limited margin of safety. Typically the stack geometry must be chosen to prevent excessive voltage build-up as opposed to mechanical overload.\ud Development and simulation of the model is described starting with a simplified blade and piezo element model. Presuming specific flight conditions transient simulations are conducted using various power harvesting circuits and their performance is evaluated. The best performing circuit is further optimized to increase the specific power output. Optimization of the electrical and mechanical domains must be done simultaneously due to the high electro-mechanical cou-pling of the piezo stack. The non-linear electrical properties of the piezo material, most notably the capacitance which may have a large influence, are not yet considered in this study.\ud The power harvesting lag damper provides sufficient power for extensive health monitoring systems within the blade while retaining the functionality and safety of the standard component. For the 8.15m blade radius and 130 knots flight speed under consideration simulations show 7.5 watts of power is generated from a single damper

    Dynamic characterisation of a damaged composite structure with stiffeners employing fibre bragg gratings

    Get PDF
    One of the key issues in composite structures for aircraft applications is the early detection and localisation of damage. Often service induced damage does not involve visible plastic deformation, but internal matrix related damage, like transverse cracks and delaminations. Their detection imposes costly maintenance techniques. Vibration based damage identification methods are promising as an alternative for the time consuming and costly Non-Destructive Testing methods currently available. These methods also offer the potential to be used in a real-time health monitoring system. The measured change of the dynamic properties is employed to identify damage such as delaminations.\ud Earlier performed research [1] showed that the Modal Strain Energy Damage Index algorithm [2] is a suitable method to identify impact induced damage in a fibre reinforced composite plate structure with stiffeners using laser vibrometer measurements. The damage identification algorithm requires the computation of the second derivative of the displacement mode shapes.\ud The goal is to extent this research by applying fibre Bragg gratings since they can be valuable. Firstly, optical fibre sensors are suitable for integration, which is required in a Structural Health Monitoring environment. Secondly, measured strain mode shapes could be advantageous with respect to the numerical errors induced by the computation of second derivatives of the displacement mode shapes.\ud Before applying the damage identification algorithm, it is a challenge to accurately extract the dynamic properties. The dynamic properties of a damaged composite T-shaped stiffener section, shown in figure 1, are investigated in this work using fibre Bragg gratings
    corecore