1,037 research outputs found

    The origin of the positron excess in cosmic rays

    Full text link
    We show that the positron excess measured by the PAMELA experiment in the region between 10 and 100 GeV may well be a natural consequence of the standard scenario for the origin of Galactic cosmic rays. The 'excess' arises because of positrons created as secondary products of hadronic interactions inside the sources, but the crucial physical ingredient which leads to a natural explanation of the positron flux is the fact that the secondary production takes place in the same region where cosmic rays are being accelerated. Therefore secondary positrons (and electrons) participate in the acceleration process and turn out to have a very flat spectrum, which is responsible, after propagation in the Galaxy, for the observed positron 'excess'. This effect cannot be avoided though its strength depends on the values of the environmental parameters during the late stages of evolution of supernova remnants.Comment: 4 Pages, 2 figures. Some references and discussion adde

    MEMS-Based Terahertz Photoacoustic Chemical Sensing System

    Get PDF
    Advancements in microelectromechanical system (MEMS) technology over the last several decades has been a driving force behind miniaturizing and improving sensor designs. In this work, a specialized cantilever pressure sensor was designed, modeled, and fabricated to investigate the photoacoustic (PA) response of gases to terahertz (THz) radiation under low-vacuum conditions associated with high-resolution spectroscopy. Microfabricated cantilever devices made using silicon-on-insulator (SOI) wafers were tested in a custom-built test chamber in this first ever demonstration of a cantilever-based PA chemical sensor and spectroscopy system in the THz frequency regime. The THz radiation source was amplitude modulated to excite acoustic waves in the chamber, and PA molecular spectroscopy of a gas species was performed. An optical measurement technique was used to evaluate the PA effect on the cantilever sensor; a laser beam was reflected off the cantilever tip and through an iris to a photodiode. As the cantilever movement deflected the laser beam, the beam was clipped by an iris and generated the PA signal. Experimental data indicated a predominantly linear response in signal amplitude from the photodiode measurement technique, which directly correlated to measured cantilever deflections. Using the custom-designed PA chamber and MEMS cantilever sensor, excellent low-pressure PA spectral data of methyl cyanide (CH3CN) at 2 to 40 mTorr range has been obtained. At low chamber pressures, the sensitivity of our system was 1.97 × 10−5 cm−1 and had an excellent normalized noise equivalent absorption (NNEA) coefficient of 1.39 × 10−9 cm−1 W Hz-½ using a 0.5 s signal averaging time

    A Comparison of Micro-Switch Analytic, Finite element, and Experimental Results

    Get PDF
    Electrostatically actuated, metal contact, micro-switches depend on having adequate contact force to achieve desired, low contact resistance. In this study, higher contact forces resulted from overdriving cantilever beam style switches, after pull-in or initial contact, until the beam collapsed onto the drive or actuation electrode. The difference between initial contact and beam collapse was defined as the useful contact force range. Micro-switch pull-in voltage, collapse voltage, and contact force predictions, modeled analytically and with the CoventorWare finite element software package, were compared to experimental results. Contact resistance was modeled analytically using Maxwellian spreading resistance theory. Contact resistance and contact force were further investigated by varying the width of the drive electrode. A minimum contact resistance of 0.26 Ω role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative; \u3eΩ was measured on micro-switches with 150 μm-wide drive electrodes. The useful contact force range for these devices was between 22.7 and 58.3 V. Contributions of this work include: a contact force equation useful for initial micro-switch designs, a detailed pull-in voltage, collapse voltage, and contact force investigation using CoventorWare, a direct comparison of measured results with analytic and finite element predictions, and a means of choosing a micro-switch operating point for optimized contact resistance performance

    Microswitches with Sputtered Au, AuPd,Au-on-AuPt, and AuPtCu Alloy Electric Contacts

    Get PDF
    This paper is the first to report on a new analytic model for predicting microcontact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bimetallic (i.e., gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6.3at%)Pt)), binary alloy (i.e., Au-palladium (Pd), (Au-(3.7at%)Pd)), and ternary alloy (i.e., Au-Pt-copper (Cu), (Au-(5.0at%)Pt-(0.5at%)Cu)) electric contacts. The microswitches with bimetallic and binary alloy contacts resulted in contact resistance values between 1-2Omega. Preliminary reliability testing indicates a 3times increase in switching lifetime when compared to microswitches with sputtered Au electric contacts. The ternary alloy exhibited approximately a 6times increase in switch lifetime with contact resistance values ranging from approximately 0.2-1.8Omeg

    Terahertz Photoacoustic Spectroscopy Using an MEMS Cantilever Sensor

    Get PDF
    In this paper, a microelectromechanical systems cantilever sensor was designed, modeled, and fabricated to measure the photoacoustic (PA) response of gases under very low vacuum conditions. The micromachined devices were fabricated using silicon-on-insulator wafers and then tested in a custom-built, miniature, vacuum chamber during this first-ever demonstration. Terahertz radiation was amplitude modulated to excite the gas under test and perform PA molecular spectroscopy. Experimental data show a predominantly linear response that directly correlates measured cantilever deflection to PA signals. Excellent low pressure (i.e., 2-40 mTorr) methyl cyanide PA spectral data were collected resulting in a system sensitivity of 1.97 × 10 -5 cm -1 and a normalized noise equivalent absorption coefficient of 1.39 × 10 -9 cm -1 W Hz -1/2

    Micro-Switches with Sputtered Au, AuPd, Au-on-AuPt, and AuPtCu Alloy Electric Contacts

    Get PDF
    This work is the first to report on a new analytic model for predicting micro-contact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bi-metallic (i.e. gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6%)Pt)), binary alloy (i.e. Au-palladium (Pd), (Au-(2%)Pd)), and tertiary alloy (i.e. Au-Pt-copper (Cu), (Au-(5%)Pt-(0.5%)Cu)) electric contacts. The micro-switches with bi-metallic and binary alloy contacts resulted in contact resistance between 1-2 /spl Omega/ and, when compared to micro-switches with sputtered Au electric contacts, exhibited a 3.3 and 2.6 times increase in switching lifetime, respectively. The tertiary alloy exhibited a 6.5 times increase in switch lifetime with contact resistance ranging from 0.2-1.8 /spl Omega/

    Reliability Testing of AlGaN/GaN HEMTs Under Multiple Stressors

    Get PDF
    We performed an experiment on AlGaN/GaN HEMTs with high voltage and high power as stressors. We found that devices tested under high power generally degraded more than those tested under high voltage. In particular, the high-voltage-tested devices did not degrade significantly as suggested by some papers in the literature. The same papers in the literature also suggest that high voltages cause cracks and pits. However, the high-voltage-tested devices in this study do not exhibit cracks or pits in TEM images, while the high-power-tested devices exhibit pits

    MEMS-Based Terahertz Photoacoustic Chemical Sensing System

    Get PDF
    Advancements in microelectromechanical system (MEMS) technology over the last several decades has been a driving force behind miniaturizing and improving sensor designs. In this work, a specialized cantilever pressure sensor was designed, modeled, and fabricated to investigate the photoacoustic (PA) response of gases to terahertz (THz) radiation under low-vacuum conditions associated with high-resolution spectroscopy. Microfabricated cantilever devices made using silicon-on-insulator (SOI) wafers were tested in a custom-built test chamber in this first ever demonstration of a cantilever-based PA chemical sensor and spectroscopy system in the THz frequency regime. The THz radiation source was amplitude modulated to excite acoustic waves in the chamber, and PA molecular spectroscopy of a gas species was performed. An optical measurement technique was used to evaluate the PA effect on the cantilever sensor; a laser beam was reflected off the cantilever tip and through an iris to a photodiode. As the cantilever movement deflected the laser beam, the beam was clipped by an iris and generated the PA signal. Experimental data indicated a predominantly linear response in signal amplitude from the photodiode measurement technique, which directly correlated to measured cantilever deflections. Using the custom-designed PA chamber and MEMS cantilever sensor, excellent low-pressure PA spectral data of methyl cyanide (CH3CN) at 2 to 40 mTorr range has been obtained. At low chamber pressures, the sensitivity of our system was 1.97 × 10−5 cm−1 and had an excellent normalized noise equivalent absorption (NNEA) coefficient of 1.39 × 10−9 cm−1 W Hz-½ using a 0.5 s signal averaging time

    Fabrication of Microelectromechanical Systems (MEMS) Cantilevers for Photoacoustic (PA) Detection of Terahertz (THz) Radiation

    Get PDF
    Historically, spectroscopy has been a cumbersome endeavor due to the relatively large sizes (3ft – 100ft in length) of modern spectroscopy systems. Taking advantage of the photoacoustic effect would allow for much smaller absorption chambers since the photoacoustic (PA) effect is independent of the absorption path length. In order to detect the photoacoustic waves being generated, a photoacoustic microphone would be required. This paper reports on the fabrication efforts taken in order to create microelectromechanical systems (MEMS) cantilevers for the purpose of sensing photoacoustic waves generated via terahertz (THz) radiation passing through a gaseous sample. The cantilevers are first modeled through the use of the finite element modeling software, CoventorWare®. The cantilevers fabricated with bulk micromachining processes and are 7x2x0.010mm on a silicon-on-insulator (SOI) wafer which acts as the physical structure of the cantilever. The devices are released by etching through the wafer’s backside and etching through the buried oxide with hydrofluoric acid. The cantilevers are placed in a test chamber and their vibration and deflection are measured via a Michelson type interferometer that reflects a laser off a gold tip evaporated onto the tip of the cantilever. The test chamber is machined from stainless steel and housed in a THz testing environment at Wright State University. Fabricated devices have decreased residual stress and larger radii of curvatures by approximately 10X
    • …
    corecore