310 research outputs found

    Fluvio-deltaic avulsions during relative sea-level fall.

    Get PDF
    Understanding river response to changes in relative sea level (RSL) is essential for predicting fluvial stratigraphy and source-to-sink dynamics. Recent theoretical work has suggested that rivers can remain aggradational during RSL fall, but field data are needed to verify this response and investigate sediment deposition processes. We show with field work and modeling that fluvio-deltaic systems can remain aggradational or at grade during RSL fall, leading to superelevation and continuation of delta lobe avulsions. The field site is the Goose River, Newfoundland-Labrador, Canada, which has experienced steady RSL fall of around 3–4 mm yr⁻¹ in the past 5 k.y. from post-glacial isostatic rebound. Elevation analysis and optically stimulated luminescence dating suggest that the Goose River avulsed and deposited three delta lobes during RSL fall. Simulation results from Delft3D software show that if the characteristic fluvial response time is longer than the duration of RSL fall, then fluvial systems remain aggradational or at grade, and continue to avulse during RSL fall due to superelevation. Intriguingly, we find that avulsions become more frequent at faster rates of RSL fall, provided the system response time remains longer than the duration of RSL fall. This work suggests that RSL fall rate may influence the architecture of falling-stage or forced regression deposits by controlling the number of deposited delta lobes

    Expression and Role of Gonadotropin-Releasing Hormone 2 and Its Receptor in Mammals

    Get PDF
    Gonadotropin-releasing hormone 1 (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, signifying high selection pressure and a critical biological role. However, the GnRH2 gene is absent (e.g., rat) or inactivated (e.g., cow and sheep) in some species but retained in others (e.g., human, horse, and pig). Likewise, many species (e.g., human, chimpanzee, cow, and sheep) retain the GnRHR2 gene but lack the appropriate coding sequence to produce a full-length protein due to gene coding errors; although production of GnRHR2 in humans remains controversial. Certain mammals lack the GnRHR2 gene (e.g., mouse) or most exons entirely (e.g., rat). In contrast, old world monkeys, musk shrews, and pigs maintain the coding sequence required to produce a functional GnRHR2. Like GnRHR1, GnRHR2 is a 7-transmembrane, G protein-coupled receptor that interacts with Gαq/11 to mediate cell signaling. However, GnRHR2 retains a cytoplas-mic tail and is only 40% homologous to GnRHR1. A role for GnRH2 and its receptor in mammals has been elusive, likely because common laboratory models lack both the ligand and receptor. Uniquely, both GnRH2 and GnRHR2 are ubiquitously expressed; transcript levels are abundant in peripheral tissues and scarcely found in regions of the brain associated with gonadotropin secretion, suggesting a divergent role from GnRH1/GnRHR1. Indeed, GnRH2 and its receptor are not physiological modulators of gonadotropin secretion in mammals. Instead, GnRH2 and GnRHR2 coordinate the interaction between nutritional status and sexual behavior in the female brain. Within peripheral tissues, GnRH2 and its receptor are novel regulators of reproductive organs. GnRH2 and GnRHR2 directly stimulate steroidogenesis within the porcine testis. In the female, GnRH2 and its receptor may help mediate placental function, implanta-tion, and ovarian steroidogenesis. Furthermore, both the GnRH2 and GnRHR2 genes are expressed in human reproductive tumors and represent emerging targets for cancer treatment. Thus, GnRH2 and GnRHR2 have diverse functions in mammals which remain largely unexplored

    Expression and Role of Gonadotropin-Releasing Hormone 2 and Its Receptor in Mammals

    Get PDF
    Gonadotropin-releasing hormone 1 (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, signifying high selection pressure and a critical biological role. However, the GnRH2 gene is absent (e.g., rat) or inactivated (e.g., cow and sheep) in some species but retained in others (e.g., human, horse, and pig). Likewise, many species (e.g., human, chimpanzee, cow, and sheep) retain the GnRHR2 gene but lack the appropriate coding sequence to produce a full-length protein due to gene coding errors; although production of GnRHR2 in humans remains controversial. Certain mammals lack the GnRHR2 gene (e.g., mouse) or most exons entirely (e.g., rat). In contrast, old world monkeys, musk shrews, and pigs maintain the coding sequence required to produce a functional GnRHR2. Like GnRHR1, GnRHR2 is a 7-transmembrane, G protein-coupled receptor that interacts with Gαq/11 to mediate cell signaling. However, GnRHR2 retains a cytoplas-mic tail and is only 40% homologous to GnRHR1. A role for GnRH2 and its receptor in mammals has been elusive, likely because common laboratory models lack both the ligand and receptor. Uniquely, both GnRH2 and GnRHR2 are ubiquitously expressed; transcript levels are abundant in peripheral tissues and scarcely found in regions of the brain associated with gonadotropin secretion, suggesting a divergent role from GnRH1/GnRHR1. Indeed, GnRH2 and its receptor are not physiological modulators of gonadotropin secretion in mammals. Instead, GnRH2 and GnRHR2 coordinate the interaction between nutritional status and sexual behavior in the female brain. Within peripheral tissues, GnRH2 and its receptor are novel regulators of reproductive organs. GnRH2 and GnRHR2 directly stimulate steroidogenesis within the porcine testis. In the female, GnRH2 and its receptor may help mediate placental function, implanta-tion, and ovarian steroidogenesis. Furthermore, both the GnRH2 and GnRHR2 genes are expressed in human reproductive tumors and represent emerging targets for cancer treatment. Thus, GnRH2 and GnRHR2 have diverse functions in mammals which remain largely unexplored

    Erratum: Divergent activity of the gonadotropin-releasing hormone receptor gene promoter among genetic lines of pigs is partially conferred by nuclear factor (NF)- kB, specificity protein (SP)1-like and GATA-4 binding sites

    Get PDF
    BACKGROUND: Binding of gonadotropin-releasing hormone (GnRH) to its receptor (GnRHR) on gonadotropes within the anterior pituitary gland is essential to reproduction. In pigs, the GnRHR gene is also located near a genetic marker for ovulation rate, a primary determinant of prolificacy. We hypothesized that pituitary expression of the GnRHR gene is alternatively regulated in genetic strains with elevated ovulation rates (Chinese Meishan and Nebraska Index) vs. standard white crossbred swine (Control). METHODS: Luciferase reporter vectors containing 5118 bp of GnRHR gene promoter from either the Control, Index or Meishan swine lines were generated. Transient transfection of line-specific, full length, deletion and mutation constructs into gonadotrope-derived αT3-1 cells were performed to compare promoter activity and identify regions necessary for divergent regulation of the porcine GnRHR gene. Additionally, transcription factors that bind the GnRHR promoter from each line were identified with electrophoretic mobility shift assays (EMSA). RESULTS: Dramatic differences in luciferase activity among Control, Index and Meishan promoters (19-, 27- and 49-fold over promoterless control, respectively; P \u3c 0.05) were established. A single bp substitution (-1690) within a previously identified upstream enhancer (-1779/-1667) bound GATA-4 in the Meishan promoter and the p52/p65 subunits of nuclear factor (NF)-κB in the homologous Control/Index promoters. Transient transfection of vectors containing block replacement mutations of either the GATA-4 or NF-κB binding sites within the context of their native promoters resulted in a 50 and 60 % reduction of luciferase activity, respectively (P \u3c 0.05). Furthermore, two single-bp substitutions in the Meishan compared to Control/Index promoters resulted in binding of the p52 and p65 subunits of NF-κB and a specificity protein 1 (SP1)-like factor (-1235) as well as GATA-4 (-845). Vectors containing the full-length Meishan promoter harboring individual mutations spanning these regions reduced luciferase activity by 25 and 20 %, respectively, compared to native sequence (P \u3c 0.05). CONCLUSIONS: Elevated activity of the Meishan GnRHR gene promoter over Control/Index promoters in αT3-1 cells is partially due to three single nucleotide polymorphisms resulting in the unique binding of GATA-4 (-1690), the p52/p65 subunits of NF-kB in combination with a SP1-like factor (-1235), and GATA-4 (-845)

    A transgenic pig model expressing a CMV-ZsGreen1 reporter across an extensive array of tissues.

    Get PDF
    Since genetic engineering of pigs can benefit both biomedicine and agriculture, selecting a suitable gene promoter is critically important. The cytomegalovirus (CMV) promoter, which can robustly drive ubiquitous transgene expression, is commonly used at present, yet recent reports suggest tissue-specific activity in the pig. The objective of this study was to quantify ZsGreen1 protein (in lieu of CMV promoter activity) in tissues from pigs harboring a CMV-ZsGreen1 transgene with a single integration site. Tissue samples

    Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns

    Get PDF
    Exosomes participate in cell-to-cell communication, facilitated by the transfer of RNAs, proteins and lipids from donor to recipient cells. Exosomes and their RNA cargos do not exclusively originate from endogenous synthesis but may also be obtained from dietary sources such as the inter-species transfer of exosomes and RNAs in bovine milk to humans. Here, we assessed the bioavailability and distribution of exosomes and their microRNA cargos from bovine, porcine and murine milk within and across species boundaries. Milk exosomes labeled with fluorophores or fluorescent fusion proteins accumulated in liver, spleen and brain following suckling, oral gavage and intravenous administration in mice and pigs. When synthetic, fluorophore-labeled microRNAs were transfected into bovine milk exosomes and administered to mice, distinct species of microRNAs demonstrated unique distribution profiles and accumulated in intestinal mucosa, spleen, liver, heart or brain. Administration of bovine milk exosomes failed to rescue Drosha homozygous knockout mice, presumably due to low bioavailability or lack of essential microRNAs

    Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns

    Get PDF
    Exosomes participate in cell-to-cell communication, facilitated by the transfer of RNAs, proteins and lipids from donor to recipient cells. Exosomes and their RNA cargos do not exclusively originate from endogenous synthesis but may also be obtained from dietary sources such as the inter-species transfer of exosomes and RNAs in bovine milk to humans. Here, we assessed the bioavailability and distribution of exosomes and their microRNA cargos from bovine, porcine and murine milk within and across species boundaries. Milk exosomes labeled with fluorophores or fluorescent fusion proteins accumulated in liver, spleen and brain following suckling, oral gavage and intravenous administration in mice and pigs. When synthetic, fluorophore-labeled microRNAs were transfected into bovine milk exosomes and administered to mice, distinct species of microRNAs demonstrated unique distribution profiles and accumulated in intestinal mucosa, spleen, liver, heart or brain. Administration of bovine milk exosomes failed to rescue Drosha homozygous knockout mice, presumably due to low bioavailability or lack of essential microRNAs

    Extending an industrial root controller : implementation and applications of a fast open sensor interface

    Full text link
    An overview is given of the design and implementation of a platform for fast external sensor integration in an industrial robot system called ABB S4CPlus. As an application and motivating example, the implementation of force-controlled grinding and deburring within the AUTOFETT-project is discussed. Experiences from industrial usage of the fully developed prototype confirms the appropriateness of the design choices, thus also confirming the fact that control and software need to be tightly integrated. The new sensor can be used for the prototyping and development of a wide variety of new application

    LH-Independent Testosterone Secretion Is Mediated by the Interaction Between GNRH2 and Its Receptor Within Porcine Testes

    Get PDF
    Unlike classic gonadotropin-releasing hormone 1 (GNRH1), the second mammalian isoform (GNRH2) is an ineffective stimulant of gonadotropin release. Species that produce GNRH2 may not maintain a functional GNRH2 receptor (GNRHR2) due to coding errors. A full-length GNRHR2 gene has been identified in swine, but its role in reproduction requires further elucidation. Our objective was to examine the role of GNRH2 and GNRHR2 in testicular function of boars. We discovered that GNRH2 levels were higher in the testis than in the anterior pituitary gland or hypothalamus, corresponding to greater GNRHR2 abundance in the testis versus the anterior pituitary gland. Moreover, GNRH2 immunostaining was most prevalent within seminiferous tubules, whereas GNRHR2 was detected in high abundance on Leydig cells. GNRH2 pretreatment of testis explant cultures elicited testosterone secretion similar to that of human chorionic gonadotropin stimulation. Treatment of mature boars with GNRH2 elevated testosterone levels similar to those of GNRH1-treated males, despite minimal GNRH2-induced release of luteinizing hormone (LH). When pretreated with a GNRHR1 antagonist (SB-75), subsequent GNRH2 treatment stimulated low levels of testosterone secretion despite a pattern of LH release similar to that in the previous trial, suggesting that SB-75 inhibited testicular GNRHR2s. Given that pigs lack testicular GNRHR1, these data may indicate that GNRH2 and its receptor are involved in autocrine or paracrine regulation of testosterone secretion. Notably, our data are the first to suggest a biological function of a novel GNRH2-GNRHR2 system in the testes of swine
    corecore