35,869 research outputs found
LDEF Materials Workshop 1991, part 2
The LDEF Materials Workshop 1991 was a follow-on to the Materials Sessions at the First LDEF Post-Retrieval Symposium held in Kissimmee, Florida, June 1991. The workshop comprised a series of technical sessions on materials themes, followed by theme panel meetings. Themes included materials, environmental parameters, and data bases; contamination; thermal control and protective coating and surface treatments; polymers and films; polymer matrix composites; metals, ceramics, and optical materials; lubricants adhesives, seals, fasteners, solar cells, and batteries. This document continues the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) pursuit to investigate the effects of LEO exposure on materials which were not originally planned to be test specimens. Papers from the technical sessions are presented
Breaking the habit: measuring and predicting departures from routine in individual human mobility
Researchers studying daily life mobility patterns have recently shown that humans are typically highly predictable in their movements. However, no existing work has examined the boundaries of this predictability, where human behaviour transitions temporarily from routine patterns to highly unpredictable states. To address this shortcoming, we tackle two interrelated challenges. First, we develop a novel information-theoretic metric, called instantaneous entropy, to analyse an individual’s mobility patterns and identify temporary departures from routine. Second, to predict such departures in the future, we propose the first Bayesian framework that explicitly models breaks from routine, showing that it outperforms current state-of-the-art predictor
Using rewards and penalties to obtain desired subject performance
Operant conditioning procedures, specifically the use of negative reinforcement, in achieving stable learning behavior is described. The critical tracking test (CTT) a method of detecting human operator impairment was tested. A pass level is set for each subject, based on that subject's asymptotic skill level while sober. It is critical that complete training take place before the individualized pass level is set in order that the impairment can be detected. The results provide a more general basis for the application of reward/penalty structures in manual control research
Spectral components at visual and infrared wavelengths in active galactic nuclei
Aperture-dependent infrared photometry of active galactic nuclei are presented which illustrate the importance of eliminating starlight of the galaxy in order to obtain the intrinsic spectral distribution of the active nuclei. Separate components of emission are required to explain the infrared emission with a spectral index of alpha approx = 2 and the typical visual-ultraviolet continuum with alpha approx = 0.3 (where F(nu) varies as nu(sup-alpha). Present evidence does not allow unique determination of the appropriate mechanisms, but the characteristics of each are discussed
Numerical constraints on the model of stochastic excitation of solar-type oscillations
Analyses of a 3D simulation of the upper layers of a solar convective
envelope provide constraints on the physical quantities which enter the
theoretical formulation of a stochastic excitation model of solar p modes, for
instance the convective velocities and the turbulent kinetic energy spectrum.
These constraints are then used to compute the acoustic excitation rate for
solar p modes, P. The resulting values are found ~5 times larger than the
values resulting from a computation in which convective velocities and entropy
fluctuations are obtained with a 1D solar envelope model built with the
time-dependent, nonlocal Gough (1977) extension of the mixing length
formulation for convection (GMLT). This difference is mainly due to the assumed
mean anisotropy properties of the velocity field in the excitation region. The
3D simulation suggests much larger horizontal velocities compared to vertical
ones than in the 1D GMLT solar model. The values of P obtained with the 3D
simulation constraints however are still too small compared with the values
inferred from solar observations. Improvements in the description of the
turbulent kinetic energy spectrum and its depth dependence yield further
increased theoretical values of P which bring them closer to the observations.
It is also found that the source of excitation arising from the advection of
the turbulent fluctuations of entropy by the turbulent movements contributes ~
65-75 % to the excitation and therefore remains dominant over the Reynolds
stress contribution. The derived theoretical values of P obtained with the 3D
simulation constraints remain smaller by a factor ~3 compared with the solar
observations. This shows that the stochastic excitation model still needs to be
improved.Comment: 11 pages, 9 figures, accepted for publication in A&
The effects of alcohol on driver performance in a decision making situation
The results are reviewed of driving simulator and in-vehicle field test experiments of alcohol effects on driver risk taking. The objective was to investigate changes in risk taking under alcoholic intoxication and relate these changes to effects on traffic safety. The experiments involved complex 15 minute driving scenarios requiring decision making and steering and speed control throughout a series of typical driving situations. Monetary rewards and penalties were employed to simulate the real-world motivations inherent in driving. A full placebo experimental design was employed, and measures related to traffic safety, driver/vehicle performance and driver behavior were obtained. Alcohol impairment was found to increase the rate of accidents and speeding tickets. Behavioral measures showed these traffic safety effects to be due to impaired psychomotor performance and perceptual distortions. Subjective estimates of risk failed to show any change in the driver's willingness to take risks when intoxicated
Geometric relationships for homogenization in single-phase binary alloy systems
A semiempirical relationship is presented which describes the extent of interaction between constituents in single-phase binary alloy systems having planar, cylindrical, or spherical interfaces. This relationship makes possible a quick estimate of the extent of interaction without lengthy numerical calculations. It includes two parameters which are functions of mean concentration and interface geometry. Experimental data for the copper-nickel system are included to demonstrate the usefulness of this relationship
- …