1,870 research outputs found

    On the origin of dark matter axions

    Get PDF
    We discuss the possible sources of dark matter axions in the early universe. In the standard thermal scenario, an axion string network forms at the Peccei-Quinn phase transition T\sim \fa and then radiatively decays into a cosmological background of axions; to be the dark matter, these axions must have a mass \ma \sim 100 \mu eV with specified large uncertainties. An inflationary phase with a reheat temperature below the PQ-scale T_{reh} \lapp \fa can also produce axion strings through quantum fluctuations, provided that the Hubble parameter during inflation is large H_1 \gapp \fa; this case again implies a dark matter axion mass \ma \sim 100 \mu eV. For a smaller Hubble parameter during inflation H_1 \lapp \fa, `anthropic tuning' allows dark matter axions to have any mass in a huge range below \ma\lapp 1 meV.Comment: to be published in the proceedings of the 5th IFT Workshop on Axion

    The shape of primordial non-Gaussianity and the CMB bispectrum

    Full text link
    We present a set of formalisms for comparing, evolving and constraining primordial non-Gaussian models through the CMB bispectrum. We describe improved methods for efficient computation of the full CMB bispectrum for any general (non-separable) primordial bispectrum, incorporating a flat sky approximation and a new cubic interpolation. We review all the primordial non-Gaussian models in the present literature and calculate the CMB bispectrum up to l <2000 for each different model. This allows us to determine the observational independence of these models by calculating the cross-correlation of their CMB bispectra. We are able to identify several distinct classes of primordial shapes - including equilateral, local, warm, flat and feature (non-scale invariant) - which should be distinguishable given a significant detection of CMB non-Gaussianity. We demonstrate that a simple shape correlator provides a fast and reliable method for determining whether or not CMB shapes are well correlated. We use an eigenmode decomposition of the primordial shape to characterise and understand model independence. Finally, we advocate a standardised normalisation method for fNLf_{NL} based on the shape autocorrelator, so that observational limits and errors can be consistently compared for different models.Comment: 32 pages, 20 figure

    First results from the Pierre Auger Observatory

    Get PDF
    We review in these notes the status of the construction of the Pierre Auger Observatory and present the first Physics results, based on the data collected during the first year and a half of operation. These results are preliminary, once the work to understand the systematics of the detectors are still underway. We discuss the cosmic ray spectrum above 3 EeV, based on the measurement done using the Surface Detector and the Fluorescence Detector, both, components of the observatory. We discuss, as well, the search for anisotropy near the Galactic Center and the limit on the photon fraction at the highest energies.Comment: 10 pages, 16 figures, Brazilian National Meeting on Particle and Fields 200

    Durotaxis: The Hard Path from In Vitro to In Vivo

    Get PDF
    Durotaxis, the process by which cells follow gradients of extracellular mechanical stiffness, has been proposed as a mechanism driving directed migration. Despite the lack of evidence for its existence in vivo, durotaxis has become an active field of research, focusing on the mechanism by which cells respond to mechanical stimuli from the environment. In this review, we describe the technical and conceptual advances in the study of durotaxis in vitro, discuss to what extent the evidence suggests durotaxis may occur in vivo, and emphasize the urgent need for in vivo demonstration of durotaxis

    Primordial non-Gaussianity and the CMB bispectrum

    Get PDF
    We present a new formalism, together with efficient numerical methods, to directly calculate the CMB bispectrum today from a given primordial bispectrum using the full linear radiation transfer functions. Unlike previous analyses which have assumed simple separable ansatze for the bispectrum, this work applies to a primordial bispectrum of almost arbitrary functional form, for which there may have been both horizon-crossing and superhorizon contributions. We employ adaptive methods on a hierarchical triangular grid and we establish their accuracy by direct comparison with an exact analytic solution, valid on large angular scales. We demonstrate that we can calculate the full CMB bispectrum to greater than 1% precision out to multipoles l<1800 on reasonable computational timescales. We plot the bispectrum for both the superhorizon ('local') and horizon-crossing ('equilateral') asymptotic limits, illustrating its oscillatory nature which is analogous to the CMB power spectrum

    Cosmic Microwave Background Radiation Anisotropy Induced by Cosmic Strings

    Full text link
    We report on a current investigation of the anisotropy pattern induced by cosmic strings on the cosmic microwave background radiation (MBR). We have numerically evolved a network of cosmic strings from a redshift of Z=100Z = 100 to the present and calculated the anisotropies which they induce. Based on a limited number of realizations, we have compared the results of our simulations with the observations of the COBE-DMR experiment. We have obtained a preliminary estimate of the string mass-per-unit-length ÎĽ\mu in the cosmic string scenario.Comment: 8 pages of TeX - [Color] Postscript available by anonymous ftp at ftp://fnas08.fnal.gov:/pub/Publications/Conf-94-197-A, FERMILAB-Conf-94/197-

    Primordial non-Gaussianity and Bispectrum Measurements in the Cosmic Microwave Background and Large-Scale Structure

    Get PDF
    The most direct probe of non-Gaussian initial conditions has come from bispectrum measurements of temperature fluctuations in the Cosmic Microwave Background and of the matter and galaxy distribution at large scales. Such bispectrum estimators are expected to continue to provide the best constraints on the non-Gaussian parameters in future observations. We review and compare the theoretical and observational problems, current results and future prospects for the detection of a non-vanishing primordial component in the bispectrum of the Cosmic Microwave Background and large-scale structure, and the relation to specific predictions from different inflationary models.Comment: 82 pages, 23 figures; Invited Review for the special issue "Testing the Gaussianity and Statistical Isotropy of the Universe" for Advances in Astronom
    • …
    corecore