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The most direct probe of non-Gaussian initial conditions has come from bispectrum measurements of temperature fluctuations
in the Cosmic Microwave Background and of the matter and galaxy distribution at large scales. Such bispectrum estimators are
expected to continue to provide the best constraints on the non-Gaussian parameters in future observations. We review and
compare the theoretical and observational problems, current results, and future prospects for the detection of a nonvanishing
primordial component in the bispectrum of the Cosmic Microwave Background and large-scale structure, and the relation to
specific predictions from different inflationary models.

1. Introduction

The standard inflationary paradigm predicts a flat Universe
perturbed by nearly-Gaussian and scale-invariant primordial
perturbations. These predictions have been verified to a
high degree of accuracy by Cosmic Microwave Background
(CMB) and Large-Scale Structure (LSS) measurements, such
as those provided by the Wilkinson Microwave Anisotropy
Probe (WMAP) [1], the 2dF Galaxy Redshift Survey
(2dFGRS) [2], and the Sloan Digital Sky Survey (SDSS) [3].
Despite this success, it has proved to be difficult to discrimi-
nate between the vast array of inflationary scenarios that have
been proposed by high-energy theoretical investigations or
even to rule-out alternatives to inflation. Since most of the
present constraints on the Lagrangian of the inflaton field
have been obtained from measurements of the two-point
function, or power spectrum, of the primordial fluctuations,
a natural step to extend the available information is to look
at non-Gaussian signatures in higher-order correlators.

The lowest-order additional correlator to take into
account is the three-point function or its counterpart in
Fourier space, the bispectrum. Most models of inflation are
characterized by specific predictions for the bispectrum of

the primordial perturbations in the gravitational potential
Φ(k). The bispectrum BΦ(k1, k2, k3) of these perturbations
is defined as

〈Φ(k1)Φ(k2)Φ(k3)〉 ≡ (2π)3δD(k123)BΦ(k1, k2, k3), (1)

where we have introduced the notation ki j ≡ k1 + k2 so that
the Dirac delta function here is δD(k123) ≡ δD(k1 + k2 +
k3). Together with the assumption of statistical homogeneity
and isotropy for the primordial perturbations, this implies
that the bispectrum is a function of the triplet defined by
the magnitude of the wavenumbers k1, k2, and k3 forming
a closed triangular configuration. The current constraints
that we are able to derive on the bispectrum BΦ(k1, k2, k3)
provide additional information about the early Universe; the
possible detection of a non-vanishing primordial bispectrum
in future observations would represent a major discovery,
especially as it is predicted to be negligible by standard
inflation.

The cosmological observable most directly related to the
initial curvature bispectrum is given by the bispectrum of the
CMB temperature fluctuations, which provide a map of the
density perturbations at the time of decoupling, the earliest
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Figure 1: Triangle types contributing to the bispectrum corresponding to “squeezed” or local configurations with k3 � k1, k2 (a),
equilateral configurations with k3 ≈ k1 ≈ k2 (b), and flattened configurations with k3 ≈ k1 + k2 (c).

information we have about the Universe. Current measure-
ments of individual triangular configurations of the CMB
bispectrum are, however, consistent with zero. Studies of the
primordial bispectrum, therefore, are usually characterized
by constraints on a single-amplitude parameter, denoted
by fNL, once a specific model for BΦ is assumed. Since
most models predict a curvature bispectrum obeying the
hierarchical scaling BΦ(k, k, k) ∼ P2

Φ(k), with PΦ(k) being
the curvature power spectrum, the non-Gaussian parameter
roughly quantifies the ratio fNL ∼ BΦ(k, k, k)/P2

Φ(k), defin-
ing the “strength” of the primordial non-Gaussian signal. In
addition, we can write

BΦ(k1, k2, k3) ≡ fNLF(k1, k2, k3), (2)

where F(k1, k2, k3) encodes the functional dependence of the
primordial bispectrum on the specific triangle configura-
tions. For brevity, the characteristic shape-dependence of a
given bispectrum is often referred to simply as the bispectrum
shape (a precise definition of the bispectrum shape function
will be given in Section 2.1). Inflationary predictions for
both the amplitude fNL and the shape of BΦ are strongly
model dependent. Notice that the subscript “NL” stands for
“nonlinear”, since a common phenomenological model for
the non-Gaussianity of the initial conditions can be written
as a simple nonlinear transformation of a Gaussian field.
Generically, of course, non-Gaussianity is associated with
nonlinearities, such as nontrivial dynamics during inflation,
resonant behaviour at the end of inflation (“preheating”),
or nonlinear postinflationary evolution. At the very least,
future CMB and LSS observations are expected to be able
to eventually detect the last of the three effects mentioned
above.

Perturbations in the CMB provide a particularly con-
venient test of the primordial density field because CMB
temperature and polarization anisotropies are small enough
to be studied in the linear regime of cosmological perturba-
tions. Once the effects of foregrounds are properly taken into
account, a non-vanishing CMB bispectrum at large scales
would be a direct consequence of a non-vanishing primordial
bispectrum. As we will see, while other CMB probes of
primordial non-Gaussianity are available, such as tests of
the topological properties of the temperature map based
on Minkowski Functionals or measurements of the CMB
trispectrum, the estimator for the non-Gaussian parameter
fNL has been shown to be optimal. We will focus mostly

on this bispectrum estimator in the section of this paper
dedicated to the CMB.

In the standard cosmological model, the large-scale
structure of the Universe, that is, the distribution of matter
and galaxies on large scales, is the result of the nonlinear
evolution due to gravitational instability of the same initial
density perturbations responsible for the CMB anisotropies.
This is, perhaps, the most important prediction of the
inflationary framework which provides a common origin for
the CMB and large-scale structure perturbations as the result
of tiny quantum fluctuations stretched over cosmological
scales during a phase of accelerated expansion. The large-
scale structure we observe at low redshift, however, is
characterized by large voids and small regions with very
large-matter density, and it is therefore a much less direct
probe of the initial conditions. The distribution of matter
becomes a highly non-Gaussian field precisely as a result of
the nonlinear growth of structures, even for Gaussian initial
conditions. This non-Gaussianity is expressed, in particular,
by a non-vanishing matter bispectrum at any measurable
scale, including the largest scales probed by current or future
redshift surveys. In this context, the effect of primordial non-
Gaussianity, that is, of an initial component in the curva-
ture bispectrum, will constitute a correction to the galaxy
bispectrum. It follows that the possibility of constraining
or detecting this initial component is strictly related to our
ability to distinguish it from other primary sources of non-
Gaussianity, that is, the nonlinear gravitational evolution,
and, in the case of galaxy surveys, nonlinear bias.

The study of non-Gaussian initial conditions for large-
scale structure has a relatively long history, with important
contributions going back to the mid eighties. The standard
picture that has been developed over the years assumed
that, at large scales, the effect of primordial non-Gaussianity
on the galaxy distribution is simply given in terms of an
additional component to the galaxy bispectrum. This is
obtained, in perturbation theory, as the linearly evolved
and linearly biased initial matter bispectrum, related to the
curvature bispectrum BΦ(k1, k2, k3) by the Poisson equation.
Such component becomes subdominant as the gravity-
induced non-Gaussian contribution grows in time. In this
framework, as one can expect, high-redshift and large-
volume galaxy surveys would constitute the best probes of the
initial conditions. It has been shown, in fact, that proposed
and planned redshift surveys, such as those of Euclid [4],
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should be able to provide constraints on the primordial non-
Gaussian parameters comparable to, if not better than, those
expected from CMB missions such as those of Planck. What
is more important, in the event of a detection by Planck, is
that confirmation by large-scale structure observations will
be required.

Recent results from N-body simulations with non-
Gaussian initial conditions, however, have revealed a more
complex picture. The effect of primordial non-Gaussianity
at large scales is not limited to an additional contribution to
the galaxy bispectrum, but it quite dramatically affects the
galaxy bias relation itself, that is, the relation between the
matter and galaxy distributions. A surprising consequence
is that it induces a large correction even for the galaxy
power spectrum. Such an effect has attracted considerable
recent attention and, remarkably, has placed constraints
on the non-Gaussian parameter from current LSS datasets
which already appear to marginally improve on CMB
limits. However, from a theoretical point of view, a proper
understanding of the phenomenon is not fully developed yet.
For example, reliable predictions for the galaxy bispectrum
are not yet available. Most importantly, as for general
cosmological parameter estimation, a complete likelihood
analysis aimed at constraining, or detecting, primordial
non-Gaussianity in large-volume redshift surveys should
involve joint measurements of the galaxy power spectrum
and bispectrum, as well as possibly higher-order correlation
functions. While we are still far from a proper assessment of
what such analysis would be able to achieve, current results
in this direction are very encouraging.

This review is divided into four parts. In Section 2 we
will first discuss initial conditions as defined in terms of the
primordial curvature bispectrum and its phenomenology.
We will then review the observational consequences of pri-
mordial non-Gaussianity on the CMB bispectrum, Section 3,
and on the large-scale structure bispectrum as measured
in redshift surveys, Section 4. In both cases we will discuss
theoretical models for the observed bispectra and technical
problems related to the estimation of the non-Gaussian
parameters, with the differences that naturally characterize
such distinct observables. We also give an example of joint
analysis using both CMB and large-scale structure when
we consider the possibility of constraining a strongly scale-
dependent non-Gaussian parameter fNL(k), emerging in
some recently proposed inflationary models.

2. Initial Conditions and
the Primordial Bispectrum

In this section we will briefly overview the main predictions
of inflationary models regarding the non-Gaussianity (NG)
of the primordial curvature perturbation field. The link
between NG of primordial density fluctuations and NG
of CMB and LSS will be shown in following sections.
In order to provide a full description of an NG random
field, all correlators beyond the 2-point function are in
principle necessary. However in this review we will focus
on the primordial bispectrum (i.e., three-point function

in Fourier space). This is not only justified by the fact
that the bispectrum is the first and simplest higher-order
correlator to look at, but also by the fact that most
models of inflation predict vanishingly small correlators
beyond the bispectrum. In Section 2.1 we will introduce
the relevant quantities, their mathematical definitions, and
we will provide a general overview and classification of the
bispectra predicted in different inflationary scenarios (only
from a purely mathematical point of view, without linking
them to the Physics originating them at this stage). Finally, a
useful eigenmode expansion technique for bispectra will be
introduced in Section 2.2 and applied to the calculation of
correlations between different bispectra in Section 3.4. In the
same section we will also show which kinds of bispectra are
predicted by different models of inflation.

2.1. The Primordial Bispectrum and Shape Function. The
starting point for this discussion is the primordial gravi-
tational potential perturbation Φ(x, t) which was seeded
by quantum fluctuations during inflation or by some other
mechanism in the very early Universe (t � tdec). When
characterizing the fluctuationsΦ, we usually work in Fourier
space with the (flat space) transform defined through

Φ(x, t) =
∫

d3k

(2π)3 e−ik·xΦ(k, t). (3)

The primordial power spectrum PΦ(k) of these potential
fluctuations is found using an ensemble average:

〈
Φ(k)Φ∗(k′)

〉 = (2π)3δD(k− k′)PΦ(k), (4)

where we have assumed that physical processes creating
the fluctuations are statistically isotropic so that only the
dependence on the wavenumber remains k = |k|. Recall
that, for nearly scale-invariant perturbations, the fluctuation
variance on the horizon scale k ≈ H is almost constant
Δ2
k∼H ≈ k3PΦ(k)/2π2 ≈ const., implying that PΦ(k) ∼ k−3.

The primordial bispectrum BΦ(k, k2, k3) is found from
the Fourier transform of the three-point correlator as

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δD(k123)BΦ(k1, k2, k3). (5)

Here, the delta function enforces the triangle condition, that
is, the constraint that the wavevectors in Fourier space must
close to form a triangle: k1 + k2 + k3 = 0. Examples of
such triangles are shown in Figure 1, illustrating the basic
squeezed, equilateral, and flattened triangles to which we will
refer later. Note that a specific triangle can be completely
described by the three lengths of its sides and so, in the
isotropic case, we are able to describe the bispectrum using
only the wavenumbers k1, k2, k3. The triangle condition
restricts the allowed wavenumber configurations (k1, k2, k3)
to the interior of the tetrahedron illustrated in Figure 2.

The most studied primordial bispectrum is the local
model in which contributions from “squeezed” triangles are
dominant, that is, with, for example, k3 � k1, k2 (as
illustrated in Figure 1(a)). This is well motivated physically
as it encompasses “superhorizon” effects during inflation
when a large-scale mode k3 (say) which has exited the
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Hubble radius exerts a nonlinear influence on the subsequent
evolution of smaller-scale modes k1, k2. Although this effect
is small in single-field slow-roll inflation, it can be much
larger for multifield models. In a weakly coupled regime,
the potential can be split into two components: the linear
term ΦL, representing a Gaussian field, giving the usual
perturbation results, plus a small local non-Gaussian term
ΦNL [5]:

Φ(x) = ΦL(x) +ΦNL(x)

= ΦL(x) + fNL
[
Φ2
L(x)− 〈Φ2

L(x)
〉]

,
(6)

where fNL is called the nonlinearity parameter. In Fourier
space, the nonlinear term is then given by the convolution

ΦNL(k) = fNL

[∫
d3k

(2π)3ΦL(k+k′)ΦL(k′)−(2π)3δD(k)
〈
Φ2
L

〉]
.

(7)

From this we can infer, using (4), that the only non-vanishing
contributions to the bispectrum (5) take the form

〈Φ(k1)Φ(k2)Φ(k3)〉

= 2(2π)3δD(k123) [PΦ(k1)PΦ(k2) + PΦ(k2)PΦ(k3)

+PΦ(k3)PΦ(k1)].

(8)

In the scale-invariant case the power spectrum of the
primordial potential takes the form PΦ(k) = ΔΦk−3, where
ΔΦ defines the amplitude of primordial fluctuations at the
end of inflation. Accounting for permutations, the local
bispectrum then becomes

BΦ(k1, k2, k3)

= 2 fNL[PΦ(k1)PΦ(k2) + PΦ(k2)PΦ(k3) + PΦ(k3)PΦ(k1)]


 2 fNL
Δ2
Φ

(k1k2k3)2

(
k2

1

k2k3
+

k2
2

k1k3
+

k2
3

k1k2

)
.

(9)

Although this is a rather pathological function which
diverges along the edges of the tetrahedron (i.e., when any
ki → 0), we can infer from it some basic properties of the
bispectrum for any model which is nearly scale invariant. For
example, we can observe that the bispectrum at equal ki has
the characteristic scaling

BΦ(k, k, k) = 2 fNLΔ
2
Φ

k6
. (10)

If we remove this overall k−6 scaling by multiplying (9) by
the factor (k1k2k3)2, then we note that on transverse slices
through the tetrahedron defined by k̃ ≡ (k1 + k2 + k3)/2 =
const. (see Figure 2 ) the bispectrum only depends on the
ratios of the wavenumbers, say, k2/k1 and k3/k1. Indeed, it
can prove convenient to characterize the bispectrum in terms
of the following transverse parameters [6, 7]:

k̃ = 1
2

(k1 + k2 + k3), α̃ = (k2 − k3)

k̃
, β̃ =

(
k̃ − k1

)

k̃
,

(11)
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0

(0,K ,K)

(K , 0,K)
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Figure 2: Tetrahedral domain for allowed wavenumber con-
figurations k1, k2, k3 contributing to the primordial bispectrum
B(k1, k2, k3). A regular tetrahedron is shown satisfying k1 +k2 +k3 ≤
2kmax ≡ 2K .

with the domains k̃ ≤ kmax, 0 ≤ β̃ ≤ 1, and −(1 − β̃) ≤
α̃ ≤ 1 − β̃. The volume element on the regular tetrahe-
dron of allowed wavenumbers then becomes dk1dk2dk3 =
k2dk̃ dα̃ dβ̃.

These considerations lead naturally to the definition of
the primordial shape function [8]

S(k1, k2, k3) ≡ 1
N

(k1k2k3)2BΦ(k1, k2, k3), (12)

where N is a normalization factor which is often chosen such
that S is unity for the equal ki case; that is, S(k, k, k) = 1 (we
will discuss alternatives to this rather arbitrary convention
later). For example, the canonical “local” model (9) has the
shape

Slocal(k1, k2, k3) = 1
3

(
k2

1

k2k3
+

k2
2

k1k3
+

k2
3

k1k2

)
. (13)

Thus it is usual to describe the primordial bispectrum in
terms of an overall amplitude fNL and a transverse two-

dimensional shape S(k1, k2, k3) = S(α̃, β̃), which incorpo-
rates any distinctive momentum dependence. Of course,
if there is a nontrivial scale dependence, then the full
three-dimensional dependence of S(k1, k2, k3) on ki must be
retained.

There are other physically well-motivated shapes in the
literature which have also been extensively studied. The
simplest shape is the constant model

Sconst(k1, k2, k3) = 1, (14)

which, like the local model, has a large-angle analytic
solution for the CMB bispectrum [9]. The local model tends
to be the benchmark against which all other models are
compared and normalized, but for practical purposes the
constant model is much more useful, given its regularity at
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both late and early times. The equilateral shape is another
important case with [8]

Sequil(k1, k2, k3) = (k1 + k2 − k3)(k2 + k3 − k1)(k3 + k1 − k2)
k1k2k3

.

(15)

While being not derived directly from a physical model, it
has been chosen phenomenologically as a separable ansatz
for higher-derivative models [10] and DBI inflation [11].
The equilateral shape is contrasted with the local model in
Figure 3.

Another important early result was the primordial
bispectrum shape for single-field slow-roll inflation derived
by Acquaviva et al. [12] and Maldacena [13]:

SMald(k1, k2, k3)

∝ (
3ε − 2η

)[ k2
1

k2k3
+

k2
2

k1k3
+

k2
3

k1k2

]

+ ε
[(
k1k

2
2 + 5 perm.

)
+ 4

k2
1k

2
2 + k2

2k
2
3 + k2

3k
2
1

k1k2k3

]


 (
6ε − 2η

)
Slocal(k1, k2, k3) +

5
3
ε Sequil(k1, k2, k3),

(16)

where ε, η are the usual slow-roll parameters. In the second
line, we have noted that this shape can be accurately
represented as the superposition of local and equilateral
shapes. The coefficients in (16), which include the scalar
spectral index n − 1 = −6ε + 2η ∼ −0.05, confirm that
fNL � 1, and so standard single slow-roll inflation cannot
produce an observationally significant signal. Nevertheless, it
is interesting to determine which shape is dominant in (16)
and to what extent other primordial shapes are independent
from one another.

Whether two different primordial shapes can be dis-
tinguished observationally can be determined from the
correlation between the corresponding two CMB bispectra
weighted for the anticipated signal-to-noise-ratio, as in the
estimator (see next section) and the Fisher matrix analysis
(see Section 3.8). However, direct calculations of the CMB
bispectrum can be very computationally demanding. A
much simpler approach is to determine the independence of
the two shape functions S and S′ from the correlation integral
(see [9], and also the study by Babich et al. in [8])

Fε(S, S′) =
∫

Vk

S(k1, k2, k3)S′(k1, k2, k3)ωε(k1, k2, k3)dVk,

(17)

where we choose the weight function to be

ωε(k1, k2, k3) = 1
k1 + k2 + k3

, (18)

reflecting the primary scaling of the CMB correlator. The
shape correlator is then defined by

C(S, S′) = F(S, S′)√
F(S, S)F(S′, S′)

. (19)

Here, the integral is over the tetrahedral region shown in
Figure 2 taken out to a maximum wavenumber k � kmax

corresponding to the experimental range l ≤ 	max for
which forecasts are sought (with 	max ≈ τ0kmax, with τ0

being the present-day conformal time). The weight func-
tion ωε(k1, k2, k3) appropriate for mimicking the large-scale
structure bispectrum estimator (see Section 4.3.2) would
be different with varying scaling laws introduced by the
transfer functions for wavenumbers k above and below keq,
the inverse comoving horizon at equal matter-radiation.
Nevertheless, the 1/k weight given in (18) provides a
compromise between these scalings, and so shape correlation
results should offer a useful first approximation.

Below we will survey primordial models in the literature,
showing how close the shape correlator comes to a full Fisher
matrix analysis. However, here we note that the local shape
(13) and the equilateral shape (53) have only a modest 46%
correlation. For the natural values of the slow-roll parameters
ε ≈ η we find the somewhat surprising result that SMald is
99.7% correlated with Slocal (and it cannot be easily tuned
otherwise because 3ε ≈ η is not consistent with deviations
from scale invariance favored observationally n−1 < 0). Such
strong correspondences are important in defining families
of related primordial shapes, thus reducing the number of
different cases for which separate observational constraints
must be sought.

2.2. General Primordial Bispectra and Separable Mode Expan-
sions. The three shape functions (13), (14), and (53) quoted
above share the important property of separability; that is,
they can be written in the form

S(k1, k2, k3) = X(k1)Y(k2)Z(k3) + 5 perms, (20)

or as the sum of just a few such terms. As we will see,
if a shape S is separable, then the computational cost of
evaluating the corresponding CMB bispectrum B	1	2	3 is
dramatically reduced. In fact, without this property, the
task of estimating whether a nonseparable bispectrum is
consistent with observation appears to be intractable (for
large 	max). Of course, the number of models which can be
expressed directly in the form of (20) is very limited, despite
the usefulness of approximate ansätze such as the equilateral
shape (53). Indeed, approximating nonseparable shapes by
educated guesses for the separable functions X , Y , Z is
neither systematic nor computationally efficient (because
arbitrary nonscaling functions create numerical difficulties,
as we will explain later).

Instead, we will present a separable mode expansion
approach for efficient calculations with any nonseparable
bispectrum, as described in detail by Fergusson et al. in [14]
(and originally proposed in [6]). Our aim will be to express
any shape function as an expansion in mode functions

S(k1, k2, k3) =
∑
p

∑
r

∑
s

αprs q{p(k1)qr(k2)qs}(k3)

≡
∑
n

αQ
n Qn(k1, k2, k3),

(21)
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Figure 4: The one-dimensional tetrahedral polynomials qn(k) on
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plotted are the shifted Legendre polynomials Pn(2x − 1) (dashed
lines) which share qualitative features such as n nodal points.

where, here, for convenience, we have represented the
symmetrized products of the separable basis functions qp(k)
as

Qn(k1, k2, k3) = 1
6

[
qp(x)qr

(
y
)
qs(z) + 5 perms

]

≡ q{pqrqs},
(22)

with a one-to-one mapping ordering the products as n ↔
{prs}. The important point is that qp(k) must be an indepen-
dent set of well-behaved basis functions which can be used
to construct complete and orthogonal three-dimensional
eigenfunctions on the tetrahedral region VT defined by (see
Figure 2)

k1, k2, k3 ≤ kmax, k1 ≤ k2 + k3 for k1 ≥ k2, k3, +2 perms.
(23)

The introduction of the cutoff at kmax is motivated by both
separability and the correspondence with the observational
domain l ≤ 	max. In the shape correlator (19), we have
already seen what is essentially an inner product between two
shapes on this tetrahedral region, which we can define for
two functions f , g as

〈
f , g

〉 =
∫

VT

f (k1, k2, k3)g(k1, k2, k3)ω(k1, k2, k3)dVT ,

(24)

with weight function w.

Satisfactory convergence for known bispectra can be
found by using simple polynomials qp(k) in the expansion
(21), that is, using analogues of the Legendre polynomials
on the domain (23). With unit weight, the polynomials
satisfying 〈qp(k1), qr(k1)〉 = δpr can be found by generating
functions with the first three given by [14]

q0(x) =
√

2, q1(x) = 5.79
(
− 7

12
+ x

)
,

q2(x) = 23.3
(

54
215

− 48
43
x + x2

)
, . . . .

(25)

The first few polynomials qp(k) are plotted in Figure 4, where
they are contrasted with the Legendre polynomials.

The three-dimensional separable basis functions Qn in
(22) reflect the six symmetries of the bispectrum through
the permuted sum of the product terms. They could have
been constructed directly from simpler polynomials, such as
1, k1 +k2 +k3, k2

1 +k2
2 +k2

3, . . . ; however, the qp polynomials
have two distinct advantages. First, the qp’s confer partial
orthogonality on the Qn and, secondly, these remain well
behaved when convolved with transfer functions.

In order to rapidly decompose an arbitrary shape
function S into the coefficients αQ

n ↔ αQ
prs, it is more

convenient to work in a nonseparable orthonormal basis
Rn (〈Rn, Rm〉) = δnm. These can be derived directly
from Qn through Gram-Schmidt orthogonalization, so that
Rn =

∑n
p=0 λmpQp with λmp being a lower triangular matrix

(see [14]). Thus we can find the unique shape function
decomposition

S(k1, k2, k3) =
N∑
n

αR
n Rn(k1, k2, k3)

=
N∑
n

αQ
n Qn(k1, k2, k3),

with αR
n = 〈S, Rn〉, αQ

n =
N∑
p

(λ�)npα
R
p .

(26)

In the orthonormal Rn frame, Parseval’s theorem ensures
that the autocorrelator is simply 〈S, S〉 = ∑

n α
R
n

2
. Hence,
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Table 1: Shape correlations (19) and CMB correlations (61)
between the equilateral family of primordial models.

DBI Ghost Single

C(S, S′) C(B,B′) C(S, S′) C(B,B′) C(S, S′) C(B,B′)

Equilateral 0.99 0.99 0.98 0.98 0.95 0.96

DBI 0.94 0.95 0.98 0.99

Ghost 0.86 0.89

with a simple and efficient prescription we can construct
separable and complete basis functions on the tetrahedral
domain (23) providing rapidly convergent expansions for
any well-behaved shape function S. These eigenmode expan-
sions will prove to be of great utility in subsequent sections.
Examples of this bispectral decomposition and its rapid
convergence for the equilateral and DBI models are shown
in Figure 5.

2.3. Families of Primordial Models and Their Correlations. We
will now briefly survey the main categories of primordial
models in the literature and their relative independence,
closely following the discussion by Fergusson and Shellard
in [9].

2.3.1. The Constant Model. The constant model (14) is
the simplest possible primordial shape with triangles of
every configuration contributing equally to the bispectrum
B(k1, k2, k3); it is the equipartition model. The constant
model was motivated initially by its simplicity [9] leading to
an analytic solution for the large-angle CMB bispectrum, as
well as due to its close correlation with equilateral models.
However, the shape does have a more explicit physical
motivation in at least one context [15], during multifield
inflation for a slowly turning trajectory (denoted as quasi-
single-field inflation). For multifield inflation, it is well
known that the conversion of isocurvature fluctuations into
curvature fluctuations during “corner-turning” can source
significant non-Gaussianity (see, e.g., [7, 16]). In the quasi-
single-field case with mass m ∼ H isocurvature modes,
a detailed investigation of the ongoing conversion into the
curvature mode demonstrated that novel shapes could be
generated [15], amongst them are the shapes which were very
nearly constant. Generically, these model-dependent shapes
belonged to a one-parameter family which interpolated
nontrivially between equilateral (53) and local (13) shapes
(see also [17, 18]). This is an important caveat for the present
discussion, because non-Gaussian searches could uncover
shapes intermediate between the categories we will discuss
below.

2.3.2. Equilateral Triangles—Centre-Weighted Models. Bis-
pectra dominated by contributions from nearly equilateral
triangle configurations, k1 ≈ k2 ≈ k3, can be fairly easily
characterized analytically and are the most amenable to CMB
searches. However, equilateral non-Gaussianity requires that
the amplification of nonlinear effects around the time

modes exit the horizon, which is not possible in a slow-
roll single-field inflation. Instead, the kinetic terms in the
effective action must be modified as in the Dirac-Born-Infeld
(DBI) model [11] or by explicitly adding higher-derivative
terms, such as in K-inflation (see, e.g., [19]). The resulting
corrections modify the sound speed cs, and inflation is able
to take place in steep potentials. For DBI inflation, this leads
to non-Gaussianity being produced with a shape function of
the form [10, 11]

S(k1, k2, k3) = 1

k1k2k3(k1 + k2 + k3)2

×
⎡
⎣∑

i

k5
i +

∑
i /= j

(
2k4

i k j − 3k3
i k

2
j

)

+
∑

i /= j /= l

(
k3
i k jkl − 4k2

i k
2
j kl
)⎤⎦.

(27)

Another example of a model with nonstandard kinetic terms
is ghost inflation [20] with a derivatively coupled field
driving inflation and a trilinear term in the Lagrangian
creating a nonzero equilateral-type shape Sghost tending
towards constant.

General non-Gaussian shapes arising from modifications
to single-field inflation have been extensively reviewed in
[19]. Using a Lagrangian that was an arbitrary function of
the field and its first derivative, they were able to identify
six distinct shapes describing the possible non-Gaussian
contributions. Half of these had negligible amplitude being
of the order of slow-roll parameters (with two already
given in (16)). Of the remaining three shapes (see [19],
and also [21]), one was believed to be subdominant and
the second recovered the DBI shape (27), leaving a third
distinct single-field shape which is the inverse of the local

shape (13): Ssingle ∝ Slocal−1
. Finally, we recall the original

equilateral shape (53), noting that it was introduced not
because of a fundamental physical motivation, but as a
separable approximation to the DBI shape (27) [8].

Despite the apparent visual differences between these
shapes (see [9]), particularly near the edges of the tetrahedral
domain, the shape correlator (19) reveals at least a 95% or
greater correlation of the DBI, ghost, and single shapes to
the equilateral shape (53) (consistent with results in [8, 22]).
Comparative results between the shape correlator are given
in Table 1 (together with the corresponding CMB correlation
results brought forward and showing the efficacy of these
estimates). These particular centre-weighted shapes must
be regarded as a single class which would be extremely
differentiate observationally, without a bispectrum detection
of very high significance.

Finally, we comment on the “orthogonal” shape Sorthog

proposed by Smith et al. in [18], together with Sequil,
for characterizing single-field inflation models with an
approximate shift symmetry (see also [19]). This shape is
approximately Sorthog ∝ Sequil − 2/3, which means that it is
very similar to an earlier study of flattened shapes [23] which
proposed an “enfolded” shape with Senfold ∝ Sequil − 1. From
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Figure 5: Orthonormal eigenmode decomposition coefficients (26) for the equilateral and DBI models (a) and shape correlations (19) of
the original bispectrum against the partial sum up to a given mode n (b). The correlation plot includes both primordial and late-time CMB
bispectra for the equilateral and DBI models, as well as the late-time CMB bispectrum from cosmic strings (refer to Section 3). In all cases,
we find that we need at most 15 three-dimensional modes to obtain a correlation greater than 98% (primordial convergence without the
acoustic peaks requires only 6 modes).

Table 2: Shape correlations (19) and CMB correlations (61) for 5 distinct families of primordial non-Gaussian models.

Local Warm Flat Feature

C(S, S′) C(B,B′) C(S, S′) C(B,B′) C(S, S′) C(B,B′) C(S, S′) C(B,B′)

Equilateral 0.46 0.51 0.44 0.42 0.30 0.39 −0.36 −0.43

Local 0.30 0.52 0.62 0.79 −0.41 −0.39

Warm 0.01 0.21 −0.05 −0.27

Flat −0.44 −0.32

the eigenmode decomposition (26) of the equilateral model
shown in Figure 5, it is clear how the degree of correlation
can be altered by subtracting out the important constant
term. With the specific choice of constant term used in
the analysis by Smith et al. [18], one gets a correlation of
about 30% between both local and equilateral shapes and the
orthogonal ansatz.

2.3.3. Squeezed Triangles—Corner-Weighted Models. The
local shape covers a wide range of models where the non-
Gaussianity is produced by local interactions. These models
have their peak signal in “squeezed” states where one ki is
much smaller than the other two due to non-Gaussianity
typically being produced on superhorizon scales. We have
already observed that single-field slow-roll inflation (16)
is dominated by the local shape [24], though f loc

NL is tiny
[12, 13, 24]. The production of non-Gaussianity during
multiple-field inflation [7, 16, 21, 25–30] shows much greater
promise through conversion of isocurvature into adiabatic
perturbations (see, e.g., recent works in [15, 17, 31, 32] and
references therein). The magnitude of the non-Gaussianity
generated is normally around f loc

NL ≈ O(1), which is at the
limit for Planck detection, but models can be tuned to create
larger signals. Significant f loc

NL can be produced in curvaton
models with f loc

NL ≈ O(100) [33–35]. Large f loc
NL can also be

generated at the end of inflation from massless preheating or
other reheating mechanisms [36–38].

We note that local non-Gaussianity can also be created in
more exotic scenarios. Models based on nonlocal field theory,
such as p-adic inflation, can have inflation in very steep
potentials. Like single-field slow-roll inflation, the predicted
“nonlocal” shape function is a combination of a dominant
local shape (13) and an equilateral shape (53) (see, e.g., [39–
42]). The ekpyrotic model can also generate significant f loc

NL
[43–47]. Here the density perturbations are generated by
a scalar field rolling in a negative exponential potential, so
nonlinear interactions are important with f loc

NL ≈ O(100).
In using the shape correlator for the local model, we

must introduce a small-wavenumber cutoff, taken to be
kmin = 2/τ0; otherwise the shape correlator C(Slocal, Slocal)
becomes infinite. This logarithmic divergence does not afflict
the CMB bispectrum bl1l2l3 because we do not consider
contributions below the quadrupole l = 2 (a threshold
which is approximated by the primordial cutoff). The local
shape is modestly correlated at the 40%–55% level with
the equilateral shapes, mainly through the constant term
in the expansion (26). As can be seen in Table 2, this
somewhat underestimates the CMB correlator. Nevertheless,
a NG signal of only modest significance should be able to
distinguish between these independent models.

Finally, warm inflation scenarios, that is, models in which
dissipative effects play a dynamical role, are also predicted to
produce significant non-Gaussianity [48, 49]. Contributions
are again dominated by squeezed configurations but with a
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different more complex shape possessing a sign flip as the
corner is approached (see Figure 6). This makes the warm
Swarm and local Slocal shapes essentially orthogonal with only
a 33% correlation. Again, in using the shape correlator,
we need to introduce the same phenomenological cutoff
kmin as for the local model, but we also note the more
serious concern which is the apparent breakdown of the
approximations used to calculate the warm inflation shape
near the corners and edges.

2.3.4. Flattened Triangles—Edge-Weighted Models. It is pos-
sible to consider inflationary vacuum states which are
more general than the Bunch-Davies vacuum, such as an
excited Gaussian (and Hadamard) state (see [50], and also
discussions in [19, 23]). Observations of non-Gaussianity in
this case might provide insight into trans-Planckian physics.
The proposed shape for the bispectrum is

Sflat(k1, k2, k3)

∝ 6

(
k2

1 + k2
2 − k2

3

k2k3
+ 2 perms

)

+
2
(
k2

1 + k2
2 + k2

3

)
s

(k1 + k2 − k3)2(k2 + k3 − k1)2(k3 + k1 − k2)2 .

(28)

The bispectrum contribution from early times is dominated
by flattened triangles, with, for example, k3 ≈ k1 + k2, and
for a small sound speed cs � 1 can be large. Unfortunately,
as the divergent analytic approximation breaks down at
the boundary of the allowed tetrahedron, some form of
cutoff must be imposed, as shown for the smoothed shape
in Figure 6 where an edge truncation has been imposed
together with a Gaussian filter. The lack of compelling physi-
cal motivation and ill-defined asymptotics make predictions
for this model uncertain.

2.3.5. Features—Scale-Dependent Models. There are also
models in which the inflation potential has a feature,
providing a break from scale invariance. This can take the
form of either a step [51] or a small oscillation superimposed
onto the potential [52]. Analytic forms for both by these
three-point functions have been presented by Chen et al. in
[53] with one approximation taking the form

Sfeat(k1, k2, k3) ∝ sin
(
k1 + k2 + k3

k∗
+ P

)
, (29)

where k∗ is the associated scale of the feature in question
and P is a phase factor. Results for the shape correlator for a
particular feature model (with k∗ ≈ 	∗/τ0 and 	∗ = 50) are
given in Table 2, showing that it is essentially independent
of all of the other shapes. Clearly, scale-dependent feature
models form a distinct fifth category beyond equilateral,
local, warm, and flat shapes.

3. Cosmic Microwave Background

Non-Gaussian initial conditions at the end of inflation
(or produced by alternative models for the generation of

primordial perturbations) can produce observable signatures
in both the CMB and LSS. It is clear that an eventual
detection of such signatures would be of great scientific
interest. Cosmological measurements of primordial NG
would indeed allow to constrain and discriminate between
the different candidate scenarios of primordial inflation that
have been briefly reviewed in the previous section in terms
of their bispectrum prediction. This section is devoted to
study the CMB bispectrum produced by a non-Gaussian
primordial curvature perturbation field. We will start in
Section 3.1 by determining how the primordial curvature
bispectrum propagates to the observed bispectra of CMB
temperature and polarization anisotropies. At the end of
this section, we will obtain a formula expressing the CMB
bispectrum as a convolution of the primordial one with
suitable radiation transfer functions. The latter encode all of
the radiative and gravitational effects producing the observed
pattern of CMB anisotropies starting from a given primordial
potential. This result will not come as a surprise to the reader
familiar with CMB theory, since it is completely analogous
to the formula relating the power spectrum of primordial
curvature perturbations to the CMB angular power spec-
trum. We will be simply recasting the same formalism in
terms of higher-order correlator. Armed with this useful
relation, we will revisit the various models described in the
previous section and calculate their corresponding CMB
bispectra. This will be done in Sections 3.2 and 3.3 where
we will employ the useful distinction between separable
and nonseparable bispectra already introduced before and
discuss its various implications. We will then compare
the bispectra predicted in different scenarios in order to
find out whether different models produce observationally
distinguishable shapes (and thus whether primordial NG
is a viable tool to discriminate between different theories
of the Early Universe). This will be done in Section 3.4 by
means of a suitably defined shape correlator that will tell us
“how similar” two CMB bispectrum shapes are. After this
preliminary work of definition and classification of various
bispectra, in Section 3.5 we will finally deal with the problem
of extracting the CMB bispectrum from the data in order
to produce statistical estimates of the level of primordial
non-Gaussianity and compare the NG measurements to
theoretical predictions.

3.1. The CMB Bispectrum. In this section we will study
the connection between the primordial bispectrum at the
end of inflation and the observed bispectrum of CMB
anisotropies B	1	2	3 . Our work will be primarily concerned
with the analysis of the three-point function induced by
a NG primordial gravitational potential Φ(k) in the CMB
temperature fluctuation field. Temperature anisotropies are
represented using the a	m coefficients of a spherical harmonic
decomposition of the cosmic microwave sky:

ΔT

T
(n̂) =

∑
	m

aT	mY	m(n̂). (30)

Analogous expansions are performed for the E-mode polar-
ization field in order to produce polarization multipoles aE	m.
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Figure 6: Shape functions for the nearly scale-invariant “warm” and “flat” NG models: S(k1, k2, k3) = S(α̃, β̃) on transverse slices with

2k̃ = k1 + k2 + k3 = const. These distinct and independent shapes prove to be largely uncorrelated with each other and the local and
equilateral models illustrated in figure; from the study by Fergusson and Shellard in [9]. See main text for the definition of the coordinate

reparametrization in terms of α̃ (y-axis) and β̃ (x-axis).

For simplicity and clarity, throughout most of this review we
will focus on the temperature multipoles aT	m and omit the
superscript T for convenience of notation. However we stress
here that all of the considerations we make in the following
can be readily applied to polarization multipoles and related
bispectra. More discussion about this subject can be found in
Section 3.8.2.

The primordial potential Φ is imprinted on the CMB
multipoles alm by a convolution with transfer functions Δl(k)
representing the linear perturbation evolution, through the
integral

a	m = 4π(−i)l
∫

d3k

(2π)3Δ	(k)Φ(k)Y	m
(

k̂
)
. (31)

The radiation transfer functions Δ	(k) encode all of the
typical effects observed in the CMB power spectrum at
linear order, that is, the Sachs-Wolfe effect, Integrated Sachs-
Wolfe effect, acoustic peaks, and silk damping (see, e.g.,
[54, 55]). An equation identical to (31) produces the E-mode
polarization CMB multipoles starting from the primordial
temperature fluctuation field, provided that polarization
transfer functions replace temperature transfer functions in
the convolution above. It is sometimes useful to rewrite (31)
in position, rather than Fourier, space. In this case it is
straightforward to show that (31) becomes

a	m =
∫
drr2α	(r)Φ	m(r), (32)

where, starting from the primordial potential Φ(x), we
transform from Cartesian into polar coordinates x = (r, x̂)
and defined

Φ	m(r) =
∫
dΩx̂Φ(x)Y	m(x̂),

α	(r) = 2
π

∫
dkk2Δ	(k) j	(kr).

(33)

In this expression j	 is the spherical Bessel function of order
	. The CMB bispectrum is the three-point correlator of a	m,
so by substituting, we obtain

B	1	2	3
m1m2m3

= 〈
a	1m1a	2m2a	3m3

〉
(34)

= (4π)3(−i)l1+l2+l3
∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3

× Δl1 (k1)Δl2 (k2)Δl3 (k3)

(35)

〈Φ(k1)Φ(k2)Φ(k3)〉Y	1m1

(
k̂1

)
Y	2m2

(
k̂2

)
Y	3m3

(
k̂3

)
(36)

=
(

2
π

)3 ∫
x2dx

∫
dk1dk2dk3(k1k2k3)2BΦ(k1, k2, k3)

× Δ	1 (k1)Δ	2 (k2)Δ	3 (k3)
(37)

× j	1 (k1x) j	2 (k2x) j	3 (k3x)
∫
dΩx̂ Y	1m1 (x̂)

× Y	2m2 (x̂)Y	3m3 (x̂),

(38)

where in the last line we have integrated over the angular
parts of the three ki, having inserted the exponential integral
form for the delta function in the bispectrum definition (5).
The last integral over the angular part of x is known as the
Gaunt integral, which can be expressed in terms of Wigner-
3 j symbols as (for more details on these functions and their
properties, see, e.g., [56] and references therein)

Gm1m2m3
	1	2	3

≡
∫
dΩxY	1m1 (x̂)Y	2m2 (x̂)Y	3m3 (x̂)

=
√

(2	1 + 1)(2	2 + 1)(2	3 + 1)
4π

(
	1 	2 	3

0 0 0

)

×
(
	1 	2 	3

m1 m2 m3

)
.

(39)
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Given that most theories we will consider are assumed to
be isotropic, the m-dependence can be factorized out of the
physically relevant part of the bispectrum [57]. It is then
usual to work with the angle-averaged bispectrum,

B	1	2	3 =
∑
mi

(
	1 	2 	3

m1 m2 m3

)〈
a	1m1a	2m2a	3m3

〉
. (40)

Or the even more convenient reduced bispectrum which
removes the geometric factors associated with the Gaunt
integral

B	1	2	3
m1m2m3

= G	1	2	3
m1m2m3

b	1	2	3 . (41)

From the previous two formulae we also derive the following
useful relations between the full, averaged, and reduced
bispectra:

B	1	2	3

=
√

(2	1 + 1)(2	2 + 1)(2	3 + 1)
4π

(
	1 	2 	3

0 0 0

)
b	1	2	3B

m1m2m3
	1	2	3

=
(
	1 	2 	3

m1 m2 m3

)
B	1	2	3 .

(42)

The reduced bispectrum from (34) then takes the much
simpler form

b	1	2	3 =
(

2
π

)3 ∫
x2dx

∫
dk1dk2dk3(k1k2k3)2 BΦ(k1, k2, k3)

× Δ	1 (k1)Δ	2 (k2)Δ	3 (k3) j	1 (k1x) j	2 (k2x) j	3 (k3x).
(43)

This is the key equation in this section, since it explicitly
relates the primordial bispectrum, predicted by inflationary
theories, to the reduced bispectrum observed in the cosmic
microwave sky. This formula is entirely analogous to the
well-known relation linking the primordial curvature power
spectrum PΦ(k) and the CMB angular power spectrum C	 ;
that is,

C	 = 2
π

∫
dkk2PΦ(k)Δ2

	(k). (44)

Finally, it is important to note that the Gaunt integral
in (41) encodes several constraints on the angle-averaged
bispectrum B	1	2	3 which are no longer transparent in the
reduced bispectrum b	1	2	3 . These are as follows.

(1) The sum of the three multipoles 	i must be even (to
ensure parity invariance).

(2) The 	i’s satisfy the triangle condition |	i − 	j| < 	k <
	i + 	j (to enforce rotational invariance).

Analogous to the wavenumber constraint (23), the second
condition tells us that the only multipole configurations
giving nonzero contributions to the bispectrum are those
that form a closed triangle in harmonic (	-)space. For

wavenumbers, the triangle condition is enforced through the
x-integral over the three spherical Bessel functions j	(kix)
which evaluates to zero if the ki’s cannot form a triangle,
whereas in multipole space it is enforced by the angular
integration dΩx over the spherical harmonics Y	imi in (39).

3.2. Separable Primordial Shapes and CMB Bispectrum Solu-
tions. In terms of the shape function (12), the reduced
bispectrum (43) can be rewritten as

b	1	2	3 =
1
N

(
2
π

)3 ∫
x2dx

∫
dk1dk2dk3S(k1, k2, k3)Δ	1 (k1)

× Δ	2 (k2)Δ	3 (k3) j	1 (k1x) j	2 (k2x) j	3 (k3x).
(45)

The expression above can be simplified, and simple analytic
solutions can sometimes be obtained for the very important
class of separable shapes obeying the ansatz S = XYZ, as in
(20). Substituting (20) into (45), we find that

b	1	2	3 =
∫
drr2X	1 (r)Y	2 (r)Z	3 (r) + 5 perms, (46)

where we have defined the quantities

X	(r) ≡
∫
dkk2X(k) j	(kr)Δ	 ,

Y	(r) ≡
∫
dkk2Y(k) j	(kr)Δ	 ,

Z	(r) ≡
∫
dkk2Z(k) j	(kr)Δ	.

(47)

Instead of the three-dimensional integral of (45), we now
have to deal with a much more tractable product of three
one-dimensional integrals. Moreover, if we work at large
angular scales in the Sachs-Wolfe approximation, the transfer
functions become Δl(k) = (1/3) jl[(τo − τdec)k], where τ0

and τdec represents respectively, the present-day conformal
time and the conformal time at decoupling. The presence of
a product of spherical Bessel functions in the integrals above
can lead in some cases to simple analytic solutions.

Let us demonstrate this for the separable primordial
shapes considered in Section 2. The simplest possible shape,
the constant model (14) with S(k1, k2, k3) = 1, has a large-
angle analytic solution for the reduced bispectrum [9]:

bconst
	1	2	3

= Δ2
Φ

27N
1

(2	1 + 1)(2	2 + 1)(2	3 + 1)

×
[

1
	1 + 	2 + 	3 + 3

+
1

	1 + 	2 + 	3

]
(l� 200).

(48)

The large-angle solution (48) is an important benchmark
with which to compare the shape of late-time CMB bispectra
from other models b	1	2	3 (note the l−4 scaling). The more
general constant solution does not have an analytic solution
because the transfer functions cannot be expressed in
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a simple form, but it can be evaluated numerically from the
expression

bconst
	1	2	3

= Δ2
Φ

N

∫
x2dxI	1 (x)I	2 (x)I	3 (x),

where I	(x) = 2
π

∫
dkΔ	(k) j	(kx).

(49)

The numerical solution is shown in Figure 7, exhibiting
a regular pattern of acoustic peaks introduced by the
oscillating transfer functions.

For the local shape (13), the Sachs-Wolfe approximation
also yields a large-angle analytic solution

blocal
	1	2	3

= 2Δ2
Φ

27π2

(
1

	1(	1 + 1)	2(	2 + 1)
+

1
	2(	2 + 1)	3(	3 + 1)

+
1

	3(	3 + 1)	1(	1 + 1)

)
,

(50)

where the divergences for the squeezed triangles (k1 �
k2, k3, . . .) in the primordial shape (13) are also reflected in
blocal
	1	2	3

. It is straightforward, in principle, to calculate the full
bispectrum from the separable expressions arising from (13):

blocal
	1	2	3

=
∫
x2dx

[
α	1 (x)β	2

(x)β	3
(x) + 2 perm.

]
, (51)

where the separated integrals analogous to (49) become

α	(x) = 2
π

∫
dkk2Δ	(k) j	(kx),

β	(x) = 2
π

∫
dkk2PΦ(k)Δ	(k) j	(kx).

(52)

However, we note that these highly oscillatory integrals must
be evaluated numerically with considerable care.

For the equilateral shape (53) we first make its separabil-
ity explicit by expanding the expression in the form:

S(k1, k2, k3) = −2−
(
k2

1

k2k3
+ 2 perm.

)
+
(
k1

k2
+ 5 perm.

)
.

(53)

While there is no simple large-angle analytic solution known
for the equilateral model, it can be evaluated from the
simplified expression

b
equil
	1	2	3

=
∫
x2dx

[
2δ	1δ	2δ	3 +

(
α	1β	2

β	3
+ 2 perm.

)

+
(
β	1

γ	2
δ	3 + 5 perm.

)]
,

(54)

where αl, βl are given in (52) and γl, δl, in the scale-
invariant case, are defined by (compare with the local case)

γl(x) = 2
π

∫
dkk2PΦ(k)1/3Δl(k) jl(kx),

δl(x) = 2
π

∫
dkk2PΦ(k)2/3Δl(k) jl(kx).

(55)

Before concluding this section we would like to note how
all of the solutions presented here present a characteristic
1/	4 scaling. This is just a direct consequence of the 1/k6

scaling of the primordial bispectrum in the scale-invariant
case, and it is a model-independent result. It is analogous
to the typical 1/	2 scaling displayed by the angular power
spectrum in correspondence to a scale-invariant primordial
power spectrum P(k).

3.3. Nonseparable Bispectra Revisited. Recall the mode
expansion (21) of a general nonseparable primordial shape.
If we substitute this into the expression for the reduced
bispectrum (45), then the separability of the expansion
leads to the same efficient calculation route discussed in the
previous section through [14]:

b	1	2	3

=
(

2
π

)3

Δ2
Φ fNL

∫
x2dxdk1dk2dk3

× 6
∑
n

αQ
n Qn(k1, k2, k3)Δ	1 (k1)Δ	2 (k2)Δ	3 (k3)

× j	1 (k1x) j	2 (k2x) j	3 (k3x)

= Δ2
Φ fNL

∑
n↔prs

αprs

∫
x2dx

×
{[

2
π

∫
dk1qp(k1)Δ	1 (k1) j	1 (k1x)

]

×
[

2
π

∫
dk2qr(k2)Δ	2 (k2) j	2 (k2x)

]

×
[

2
π

∫
dk3qs(k3)Δ	3 (k3) j	3 (k3x)

]
+ 5 perm.

}

= Δ2
Φ fNL

∑
prs

αprs

∫
x2dxq 	1

{p q
	2
r q 	3

s} ,

(56)

where q	p simply result from convolving the basis functions
qp(k) with the transfer functions

q 	
p (x) = 2

π

∫
dkqp(k)Δ	(k) j	(kx). (57)

The computationally costly 3D integrals have again reduced
to a sum over products of 1D integrals; we note that this
economy arises because the triangle condition is enforced
in (56) through the product of Bessel functions, resulting
in a manifestly separable form in which we can interchange
orders of integration. With this mode expansion, all non-
separable theoretical CMB bispectra b	1	2	3 become efficiently
calculable provided that there is a convergent expansion for
the shape function.

In the same way that we decomposed an arbitrary
primordial shape S(k1, k2, k3) in Section 2.2, it is possible
to construct analogous late-time separable basis functions
Qnand orthonormal modes Rn with which to describe
the CMB bispectrum β	1	2	3 [6, 9]. The tetrahedral domain
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Figure 7: The reduced CMB bispectrum for the constant model bconst
	1	2	3

normalized relative to the large-angle constant solution (48). On (a),
the bispectrum is plotted over the allowed tetrahedral region (see Figure 2) using several density contours (light blue positive and magenta
negative) out to 	i ≤ 2000 and, on (b), transverse triangular slices are shown at 	1 + 	2 + 	3 = 2000. Note the coherent pattern of acoustic
peaks induced by the transfer functions, from the study by Fergusson et al. in [14].

VT defined by the triangle condition for multipole con-
figurations {	1, 	2, 	3} is essentially identical to that for
wavenumbers (23), except that only even cases contribute∑
	1 + 	2 + 	3 = 2n, n ∈ N. However, the appropriate weight

function now incorporates Wigner-3 j symbols arising from
bispectrum products:

w	1	2	3 =
1

4π
(2	1 + 1)(2	2 + 1)(2	3 + 1)

⎛
⎝l1 l2 l3

0 0 0

⎞
⎠

2

,

ws
	1	2	3

= w	1	2	3

v2
	1
v2
	2
v2
	3

,

(58)

where in the second expression we have exploited the
freedom to divide by a separable function v	 = (2	+1)1/6 and
use a weight which makes the bispectrum functions more
scale invariant (eliminating an 	−1/2 factor—see below). The
inner product between two functions f	1	2	3 and g	1	2	3 is
altered from the primordial wavenumber integral (59) into
a sum over multipoles on the tetrahedral domain; that is,

〈 f , g〉 ≡
∑

	1,	2,	3∈VT

ws
	1	2	3

f	1	2	3g	1	2	3 . (59)

But for the change in the weight (which only affects
configurations near the edges of the tetrahedron), the 1D
polynomials qp(	) and the 3D separable product basis

functions Qn(	1, 	2, 	3) = q{pqrqs} (n ↔ {prs}), as well as

the resulting orthonormal modes Rn, are nearly identical
to their primordial counterparts qp(k), Qn(k1, k2, k3), and
Rn(k1, k2, k3) defined in Section 2.2.

We can now expand an arbitrary CMB bispectrum b	1	2	3

in both the separable and orthonormal mode expansions,
which is achieved in the following form:

v	1v	2v	3√
C	1C	2C	3

b	1	2	3 =
∑
n

αQ
n Qn(	1, 	2, 	3)=

∑
n

αR
n Rn(	1, 	2, 	3),

(60)

where the variance term
√
C	C	C	 reflects the signal-

to-noise weighting expected in the CMB estimator (see
Section 3.5). Again, the coefficients in the expansions are
determined, first, from the orthonormal inner products
αR
n = 〈Rn, · 〉, and, secondly, the separable αQn are found

with the transformation matrix analogous to (26). Examples
of the convergence of these mode expansions for equilateral,
DBI, and cosmic string CMB bispectra are given in Figure 5.

3.4. CMB Bispectrum Calculations and Correlations. Prior
to the systematic mode expansion approach (56) being
implemented, robust hierarchical schemes were developed
to calculate any nonseparable CMB bispectrum (45) directly

[6, 9]. These use the transverse coordinate system (k̃, α̃, β̃)
given in (11) and employ adaptive methods on a tri-
angular grid to accurately determine the oscillatory 2D
αβ-integrations, with important efficiencies also coming
from the flat sky approximation, binning, and interpolation
schemes. Precision to greater than 1% across the full Planck
domain 	 ≤ 2000 was established by direct comparison
with analytic solutions such as (48) and (50). Examples of
nonseparable (and separable) CMB bispectra found using
these hierarchical coarse-graining methods are shown in
Figures 7 and 8. While the CMB bispectra b	1	2	3 retain
the qualitative features of the primordial shape functions
S(k1, k2, k3), they are overlaid with the oscillatory transfer
functions which give rise to a coherent pattern of acoustic
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peaks. These direct bispectrum calculations revealed that
typical primordial models could be described by eigenmode
or other expansions using only a limited number of terms.

Motivated by the form of the CMB estimator, we can
define the following correlator to determine whether or not
two competing theoretical bispectra can be distinguished by
an ideal experiment:

C(B,B′) = 1
N

∑
li

B	1	2	3B
′
	1	2	3

C	1C	2C	3

= 1
N

∑
li

w	1	2	3

b	1	2	3b
′
	1	2	3

C	1C	2C	3

,

(61)

where the normalization N is defined as

N =

√√√√√∑
li

B2
	1	2	3

C	1C	2C	3

√√√√√∑
	i

B′2	1	2	3

C	1C	2C	3

. (62)

The emergence of the inner product (59) in the expression
(61) means that substitution of the mode expansions (60) for
the theoretical bispectra reduces the correlator to

C(B,B′) =
∑
n

αR
n α

R′
n . (63)

While the late-time correlator (61) is the best measure of
whether two CMB bispectra are truly independent, it can
be demonstrated that for the majority of models the shape
correlator (19) introduced earlier is sufficient to determine
independence.

On the basis of the direct calculation of the bispectrum
results and the CMB correlator, we can now quantitatively
check the forecasting accuracy of the primordial shape
correlator proposed previously (again closely following the
discussion in [9]).

3.4.1. Nearly Scale-Invariant Models. For nearly scale-
invariant models, the centre values for the bispectrum blll all
have roughly the same profile but with different normalisa-
tions. As we see from Figure 8, the oscillatory properties of
the transfer functions for the CMB power spectrum create
a series of acoustic peaks for any combinations involving
the following multipole values: l = 200, 500, 800, . . .. Of
course, to observe the key differences between the scale-
invariant models we must study the bispectrum in the plane
orthogonal to the (l, l, l)-direction, that is, the directions
reflecting changes in the primordial shape functions. To
plot the bispectrum (see Figures 7 and 8), we consistently
divide blll by the large-angle CMB bispectrum solution for
the constant model (14). This is analogous to multiplying
the power spectrum Cl’s by l(l + 1), because it serves to
remove the overall 	−4 scaling of the bispectrum, flattening
while preserving the transverse momentum-dependence
primordial shape, and the effects of the oscillating transfer
functions.

The starting point is the constant model (14) which,
despite its apparent simplicity, has a CMB bispectrum bconst

	1	2	3

revealing a nontrivial and coherent pattern of acoustic peaks
that we have already noted (see Figure 7). Given that the con-
stant model has no momentum dependence, we stress that

the resulting bispectrum is the three-dimensional analogue
of the angular power spectrum 	(	+1)C	 for a scale-invariant
model. The largest (primary) peak, for example, is located
where all three 	i = 220 (corresponding to the large blue
region near the origin). We can interpret Figure 7, therefore,
as the pure window function or beam effect of convolving
any model with the radiation transfer functions Δ	(k) while
transforming from Fourier to harmonic space.

The CMB bispectrum for the equilateral model is plotted
in Figure 8, showing how the centre weighting from the
primordial shape is well preserved despite the convolution
with the oscillating transfer functions. For the full CMB
correlator (61), the DBI, ghost, and single shapes are
generally even more closely correlated with the equilateral
model, presumably because distinctive features are “washed
out” by the transformation from Fourier to harmonic space.
Comparative results between the shape correlator and the
Fisher matrix analysis are given in Table 1, establishing that
these models are highly correlated and difficult to set apart
observationally.

The CMB bispectrum for the local model is also shown
in Figure 8, demonstrating a marked contrast with the
equilateral model which reflects their different primordial
shapes shown in Figure 3. The dominance of the signal in
the squeezed limit creates strong parallel ridges of acoustic
peaks which connect up and emanate along the corner edges
of the tetrahedron (see [58] for further details). The 51%
CMB correlation between the local and equilateral models is
underestimated by the shape correlator at 41%, presumably
because of effective smoothing due to the harmonic analysis.
Reflecting their distinctive primordial properties, the CMB
bispectra for the flat and warm models are poorly correlated
with most of the other models, though the flat shape could
be susceptible to confusion with the local CMB bispectrum
with which it has a larger correlation (see Table 2). It is
clear that the local, equilateral, warm, and flat shapes form
four distinguishable categories among the scale-invariant
models.

3.4.2. Scale-Dependent Models, Cosmic Strings, and Other
Late-Time Phenomena. Models which have a nontrivial scal-
ing, such as the feature models, can have starkly contrasting
bispectra as illustrated in Figure 8. For example, instead of
having the same pattern of acoustic peaks which characterise
the scale-invariant models, the feature model can become
entirely anticorrelated so that the primary peak has the
opposite sign. Later, for this particular choice of k∗ in
(29), for increasing l the phase of the oscillations becomes
positively correlated by the second and third peaks. This can
lead to small correlation with the other primordial shapes, all
below 45% as shown in Table 2 for this k∗ and 	max. Clearly,
these nonseparable feature models form a distinct fifth
category beyond the four scale-invariant shapes noted above
and, of course, there are many possible model dependencies
which can lead to further subdivision.

By way of further illustration of the breadth of other
possible nonseparable CMB bispectra, we present the late-
time CMB bispectrum predicted analytically for cosmic
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strings [59] as

b
string
	1	2	3

= A

(ζ	1	2	3)2

⎡
⎣(	2

3 − 	2
1 − 	2

2

)( L

2	3
+

	3

50L

)

×
√

	∗
500

erf(0.3ζ	3)+2 perm.

⎤
⎦ (	 ≤ 2000),

(64)

where 	min = min(	1, 	2, 	3), 	∗ = min(500, 	min), ζ =
min(1/500, 1/	min), and

L = ζ

√
1
2

(
	2

1	
2
2 + 	2

2	
2
3 + 	2

3	
2
1

)− 1
4

(
	4

1 + 	4
2 + 	4

3

)
. (65)

Here, A ∼ (8πGμ)3 is a model-dependent amplitude with
Gμ = μ/m2

Pl measuring the string tension μ relative to
the Planck scale. The cutoffs around 	 ≈ 500 in (50) are
associated with the string correlation length at decoupling
(perturbations with 	 � 500 can only be causally seeded
after last scattering). Here, the nonseparable nature and very
different scaling of the string CMB bispectrum are clear
from a comparison with (50). Moreover, given the late-
time origin of this signal from string metric perturbations,
the modulating effect of acoustic peaks from the transfer
functions is absent, as is clear from Figure 8. This is just
one example of late-time phenomena such as gravitational
lensing, secondary anisotropies, and contaminants which are
accessible to analysis using the more general CMB mode
expansions (60).

3.5. The Estimation of fNL from CMB Bispectra. In light of
the previous discussion, it is evident how measurements of
the bispectrum from CMB experimental datasets are able
to provide information about the primordial three-point
function of the cosmological curvature perturbation field at
the end of inflation. This in turn allows us to put significant
constraints on inflationary models or on alternative models
for the generation of cosmological perturbations. We will
now start dealing with the problem of bispectrum estimation
in the CMB as a test of primordial non-Gaussianity.

Let us assume that we have measured the three-point
function of a given CMB dataset. There are now two general
ways to exploit this information.

(1) Tests of the Gaussian Hypothesis. By comparing
the measured three-point function to its expected
distribution obtained from Gaussian simulation we
can detect whether some configurations present a
significant deviation from Gaussian expectations.
The issue with this approach is that it is sensitive
not only to primordial non-Gaussianity, but also to
any other possible source of NG, including those of
noncosmological origin. Original bispectrum tests of
this kind on COBE maps [60] revealed significant
deviations from Gaussianity in the data. This NG

signature in the three-point function seemed to
be localized in harmonic space around multipoles
	 = 16 and was object of much scrutiny (see, e.g.,
[61–65]). It was then finally ascertained that the
detected signal was not cosmological in origin, but
due to a systematic artifact [66]. Moreover, the overall
statistical significance of the result disappeared in a
later analysis involving the measurement of all of
the bispectrum modes available in the map [67]
(only a subset of all the configurations had been
studied before). General tests of Gaussianity are very
useful to identify unexpected effects in the data,
and to monitor systematics. However, as long as
we are interested in a primordial NG signal, it is
better to follow the approach of making an ansatz
for the bispectrum we expect from the theory under
study and obtain a quantitative constraint on a given
model. This approach is outlined in the point that
follows.

(2) fNL Estimation. In this case we choose the pri-
mordial model that we want to test, characterizing
it through its bispectrum shape. We then estimate
the corresponding amplitude f model

NL from the data.
If the final estimate is consistent wih f model

NL = 0,
then we conclude that no significant detection of
the given shape is produced by the data, but we
still determine important constraints on the allowed
range of f model

NL . Note that ideally we would like to
do more than just constrain the overall amplitude,
and reconstruct the entire shape from the data by
measuring single configurations of the bispectrum.
However, the expected primordial signal is too small
to allow the signal from a single-bispectrum triangle
to emerge over the noise. For this reason we study the
cumulative signal from all of the configurations that
are sensitive to f model

NL .

Since in this review we are concerned with the study
of the primordial bispectrum, we will take the latter
approach and deal with the problem of fNL estimation
from measurements of the bispectrum in CMB maps. We
will first present a cubic estimator that optimally extracts
the fNL information from the data contained in the bis-
pectrum (Section 3.5.1). We will then address the issue of
understanding whether this optimal cubic statistic extracts
all of the possible information available on fNL in the
data or whether there is enough additional information
beyond the three-point function to allow more precise fNL

measurements using non-bispectrum-based estimators of
fNL (Section 3.5.2). We will then discuss concrete numerical
implementations of bispectrum estimators (Section 3.6) and
review the experimental constraints on fNL obtained from
bispectrum analysis of WMAP data (Section 3.7). Using a
standard Fisher matrix analysis, forecasts on the fNL error
bars are achievable for future CMB surveys (Section 3.8).
Following, we will study the NG signals in the map that
could contaminate the primordial NG measurement and
how they are dealt with when analyzing the data. Finally
we will describe algorithms for the simulation of primordial
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Figure 8: The reduced CMB bispectra for several non-Gaussian models, including ((a), (b) and (c)) equilateral, local, and flattened models
and ((d), (e), and (f)) warm, feature, cosmic string models (see main text). All five primordial models are normalised relative to the constant
solution (48) and are taken from the study by Fergusson and Shellard in [9]. The analytic cosmic string bispectrum (64) is multiplied by
(	1	2	3)4/3 and is taken from the study by Regan and Shellard in [59].

NG CMB maps that are useful for testing and validation of
estimators before applying them to real data.

In the following, we assume that the reader is familiar
with essential concepts in statistical estimation theory, such
as the definition of a statistical estimator, the role played by
maximum-likelihood estimators in statistics, the definitions
of unbiasedness and optimality, and the definition and main
applications of the Fisher information matrix. The reader
unfamiliar with these concepts can consult the appendix of
this review and references therein.

3.5.1. Bispectrum Estimator of fNL. In this section we are
concerned with the statistical inference of fNL from mea-
surements of the bispectrum of the CMB anisotropies. We
recall that we defined fNL earlier as the amplitude of the
bispectrum of the primordial potential. In principle, we
can include both temperature and polarization multipoles
aT ,E
	m in the analysis, in order to maximize the available

data. However, for clarity we will consider only temperature
multipoles in the following and omit the superscript T in
a	m, for simplicity of notation. The extension to polarization
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is conceptually straightforward and will be discussed in a
following paragraph. We will start by considering a simple
cubic (The estimator is dubbed cubic due to the fact that
it contains the third power of the random variable a	m.)
statistic written in the form

f̂NL = 1
N

∑
{	i ,mi}

Wm1m2m3
	1	2	3

a	1m1a	2m2a	3m3 . (66)

In the previous equation f̂NL represents the statistical
estimate of fNL from the data, a	m are the multipoles of the
observed CMB temperature fluctuations, Wm1m2m3

	1	2	3
are some

weight functions, and N is a normalization factor that has to
be chosen to make the estimator unbiased, that is, to ensure
that

〈
f̂NL

〉
= fNL. (67)

We now want to find the weights Wm1m2m3
	1	2	3

that provide
the best estimator (i.e., the minimum error bar estimator)
within the class of cubic statistics written in the form of
(66). It is a well-known result (see Appendix) that the best
unbiased estimator of a parameter from a given dataset is
the maximum-likelihood estimator. In order to answer our
question we then have to write the bispectrum likelihood as
a function of the parameter fNL and maximize with respect
to fNL.

In the assumption that the bispectrum configurations are
characterized by a Gaussian distribution (This is not strictly
true, but it is a good approximation. The same approach
applies to most cosmological observables.), maximizing the
likelihood is equivalent to minimizing the following χ2:

χ2 =
∑
	1	2	3

(
fNLB

fNL=1
	1	2	3

− Bobs
	1	2	3

)2

σ2
, (68)

where Bobs
	1	2	3

is the observed angular averaged bispectrum,
that is, by definition

Bobs
	1	2	3

=
∑

m1m2m3

(
	1 	2 	3

m1 m2 m3

)
aobs
	1m1

aobs
	2m2

aobs
	3m3

, (69)

and σ2 is the bispectrum variance, that is, the a	m six-point
function

σ2 = 〈
a	1m1a	2m2a	3m3a	4m4a	5m5a	6m6

〉
. (70)

We will now make the assumption that we are working
in the weak non-Gaussian limit; that is, fNL is small and
the distribution of a	m can be approximated as Gaussian
in the calculation of the variance. The implications of this
approximation will be discussed in greater detail in the
following sections; for the moment it will suffice to point
out that the weak non-Gaussian approximation is generally
a good one since most inflationary models predict fNL to be
small, and because the level of primordial non-Gaussianity
is already constrained to be small by WMAP measurements
[1, 68]. After restricting indices so that 	1 ≤ 	2 ≤ 	3 and

	4 ≤ 	5 ≤ 	6, the six-point function above can be calculated
using Wick’s theorem, yielding [57]

〈
a	1m1a	2m2a	3m3a	4m4a	5m5a	6m6

〉

= Δ C	1C	2C	3δ
	4
	1
δ	5
	2
δ	6
	3
δm4
m1
δm5
m2
δm6
m3
.

(71)

In the last formula Δ is a permutation factor that takes the
value of 1 when all 	’s are different, 2 when two 	’s are equal,
and 6 when all 	’s are equal. We can now substitute (71) into
(68) and differentiate with respect to fNL to get an explicit
expression for the optimal cubic statistic we were looking for:

f̂NL = 1
N

∑
{	i ,mi}

Gm1m2m3
	1	2	3

b
fNL=1
	1	2	3

C	1C	2C	3

a	1m1a	2m2a	3m3 , (72)

N =
∑
{	i ,mi}

(
Gm1m2m3
	1	2	3

b
fNL=1
	1	2	3

)2

C	1C	2C	3

, (73)

where b	1	2	3 is the reduced bispectrum and Gm1m2m3
	1	2	3

is
the Gaunt integral defined by equation (39); N is the
normalization factor mentioned at the beginning of the
paragraph that guarantees the unbiasedness of the estimator.

Note that the noise and window function of the exper-
iment are included in the Cl and b	1	2	3 that appear in the
formula above, with the following replacements:

C	 −→ C	W
2
	 +N	 , b	1	2	3 −→ b	1	2	3W	1W	2W	3 , (74)

where W is the window function (not to be confused with the
weights W) and N	 is the noise power spectrum (constant
for uncorrelated white noise). The noise is assumed to
be Gaussian, thus characterized by a vanishing three-point
function. Comparing our result (72) to the initial ansatz (66),
we then see that the optimal weights are

Wm1m2m3
	1	2	3

= Gm1m2m3
	1	2	3

b	1	2	3

C	1C	2C	3

. (75)

In other words we are weighting the observed bispectrum by
its expected signal-to-noise ratio.

We have now constructed a statistic that optimally
extracts the information about fNL from the bispectrum
of the map. The question now is the following: is there
additional information about fNL in the map that is not
contained in the bispectrum? This issue will be investigated
in the following sections. For the impatient reader we
anticipate that the answer is no: the bispectrum statistic built
here is actually the minimum error bar estimator of fNL from
CMB data.

3.5.2. Optimality of the Cubic Estimator. In this section
we address the issue of whether the cubic statistic (72)
optimally extracts all of the fNL information contained in
a	m or whether other statistical estimators (e.g., four-point
function, or pixel space statistics such as the Minkowski
functionals, or again wavelet estimators, just to mention a
few among many possible examples) are able to produce
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smaller error bars and are thus more efficient than the
bispectrum.

In a non-Gaussian primordial CMB map, the a	m likeli-
hood depends on the NG parameter fNL. We will indicate it
with p(a | fNL), where a indicates a vector including all of the
a	m’s (we will assume that all other cosmological parameters
are fixed and concentrate on fNL). It is a well-known result in
parameter estimation theory that there is a lower limit on the
error bars that can be assigned to a given parameter (in our
case fNL). Such lower limit, also known as the Rao-Cramer
bound, is defined in terms of the Fisher matrix F as (We again
refer the reader unfamiliar with these concepts to the brief
summary provided in appendix.)

Δ fNL ≥ 1√
F fNL fNL

. (76)

We remind the reader that the Fisher matrix is defined as

F fNL fNL (a) =
〈
∂2 ln p

(
a | fNL

)
∂2 fNL

〉
. (77)

If we can show that the bispectrum estimator of the previous
section saturates the Rao-Cramer bound for the a	m Fisher
matrix above, then we conclude that it provides the best (i.e.,
minimum variance) estimate of fNL from the data, rather
than just the best fNL estimate from the bispectrum of the
data. In other words, no more information about fNL could
be extracted from a	m than the information contained in the
bispectrum. The aim of this section is to show that this is
actually the case.

The issue of the optimality of bispectrum estimators of
fNL was addressed in great detail by Babich in [69]. In this
section we will basically review the main results of that study,
referring the reader to the original paper for their complete
derivation.

As we mention in appendix, there is a sufficient and
necessary condition for an estimator E to saturate the Rao-
Cramer bound, expressed by formula (A.5). This condition,
applied to our case, reads

∂ ln p
(

a | fNL
)

∂ fNL
= F fNL fNL

(
E(a)− fNL

)
. (78)

Our aim is to show that the bispectrum statistic (72) satisfies
this condition. We then need to start from a computation
of the full likelihood p(a | fNL) for a general primordial
non-Gaussian model. Following Babich [69], we will start by
limiting ourselves to the particular case of the local model.

We recall from a previous section that local NG is the
only case for which an explicit expression for the primordial
potential is provided. In real space,

Φ(x) = ΦL(x) + f loc
NL

[
Φ2
L(x)− 〈Φ2

L(x)
〉]
. (79)

Starting from this formula, it is possible to obtain a
likelihood function for Φ, dependent on the parameter f loc

NL .
This is done by means of an expansion in terms of the
order parameter f loc

NL 〈Φ2
L(x)〉. The full expression for the

Probability Density Function (PDF) P(Φ | f loc
NL ) (see [69])

can be expanded around its Gaussian expectation for f loc
NL =

0 and schematically written as

lnP
(
Φ | f loc

NL

)
= lnPG(Φ | C) + f loc

NL lnPNG(Φ | C)

+ O
(
f 2
NL

〈
Φ2
L(x)

〉2
)

,
(80)

where C is the covariance matrix of the Gaussian part of the
potential Φ that is,

C ≡ 〈ΦL(x1)ΦL(x2)〉. (81)

Formula (80) is then telling us that the logarithm of the full
likelihood can be decomposed into the sum of a Gaussian
likelihood PG, plus a NG term that depends linearly on f loc

NL ,
and that this decomposition is accurate up to terms of order

O( f 2
NL〈Φ2

L(x)〉2
); that is, we are assuming that NG is weak, as

we did in the previous section.
After computing P(Φ | f loc

NL ), one has to account for
2D projection and radiative transfer in order to obtain the
required likelihood P(a | f loc

NL ). As shown by Babich in [69],
this can be achieved by expanding the PDF (80) in spherical
harmonics and performing the functional integration:

P
(

a | f loc
NL

)

=
∫
dNΦδ(M)

D

[
a	m −

∫
drr2α	(r)Φ	m(r)

]
P
(
Φ | f loc

NL

)
,

(82)

where δ(M)
D is the Dirac delta function of dimension M

and M < N due to the 2D projection (As noted by
Babich in [69], the additional degrees of freedom do not
affect the CMB anisotropies and can therefore be integrated
out.) The previous formula can be derived by recalling (32)
together with the well-known formula in probability theory
as follows:

P
(

y
) =

∫
dxP(x)δD

(
y − F(x)

)
, (83)

where δD is again the Dirac delta function, x and y are
random variables linked by the functional relation y = F(x),
and P(x), P(y) are the PDFs of x and y, respectively. Solving
the functional integral (82) yields [69]

lnP
(

a | f loc
NL

)

= −1
2

∑
	m

a∗	ma	m
C	

+ f loc
NL

∑
{	i ,mi}

Gm1m2m3
	1	2	3

b
f loc
NL=1
	1	2	3

C	1C	2C	3

× a	1m1a	2m2a	3m3 + I2
(

a, fNL
)

+ O
(
f 3
NL

〈
Φ3
L(x)

〉)
.

(84)

In the previous formula we can recognize the standard a	m
PDF, valid in the standard Gaussian case, in the first term on
the r.h.s. Added to this, we find a first-order fNL-correction
proportional to the CMB angular bispectrum. Higher-order
correlators are not present at order O( fNL〈ΦL(x)〉). For
reasons that will become clear shortly, although we have not
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computed it, we have explicitly denoted the O( f 2
NL〈Φ2

L(x)〉)
term in the expansion with I2(a, fNL). Note that, besides
assuming weak NG in this formula, we are also assuming
rotational invariance (this is evident from the fact that the a	m
covariance matrix appearing in the Gaussian piece of (84) is
diagonal and equal to C	). Rotational invariance is a general
property of the CMB sky, but it is broken when we deal with
real CMB measurement characterized by inhomogeneous
noise patterns and sky cuts. We will investigate these effects
in the following section. For the moment we consider the
purely ideal case described by (84). Armed with the PDF
expression for local NG and recalling the necessary and
sufficient condition (78), we can finally determine whether
the estimator (72) is optimal or not. First of all we see that

∂ ln p
(

a | f loc
NL

)

∂ f loc
NL

=
∑
{	i ,mi}

Gm1m2m3
	1	2	3

b
f loc
NL=1
	1	2	3

C	1C	2C	3

a	1m1a	2m2a	3m3

+
∂I2
(

a, fNL
)

∂ fNL
+ O

(
f 2
NL

〈
Φ2
L(x)

〉)
.

(85)

We then see from combining (85) and (72) that

∂ ln p
(

a | f loc
NL

)

∂ f loc
NL

∝
[
f̂NL(a)+

∂I2
(

a, fNL
)

∂ fNL
+O

(
f 2
NL

〈
Φ2
L(x)

〉)]
.

(86)

We now see that, in order for the necessary and sufficient
condition for optimality (78) to be verified, we need the
(∂I2/∂ fNL) term to be exactly equal to − fNL. The second-
order quantity I2 should then be calculated explicitly in
the expansion (84) in order to complete the calculation
and verify whether, or under which conditions, this is true.
However this turns out not to be necessary if we consider
the following “regularity condition for a PDF”. (Condition
(87) can be easily derived remembering that, for a given
random variable x with probability density p(x), we have by
definition 〈F(x)〉 ≡ ∫

dxF(x)p(x), and substituting F(x) →
∂ ln p(x | λ)/∂λ in the previous expression, one then finds
that the regularity condition (87) holds, provided the order
of integration and differentiation can be exchanged (hence
the “regularity condition” qualification). ) For a general PDF
of a random variable x depending on a parameter λ, we have

〈
∂ ln p(x | λ)

∂λ

〉
= 0. (87)

Since this regularity condition must be valid for each value
of the parameter λ (λ → f loc

NL in our case), it is clear that
it must hold term-by-term, that is, at each order, in the
expansion (84). By taking the average value of equation (86),
keeping in mind that the estimator is unbiased and imposing
(87), we then find that the average value of ∂I2(a, fNL)/∂ fNL

must be exactly equal to − fNL. If we could then replace
∂I2(a, fNL)/∂ fNL in (86) with its average value, then we would
exactly obtain the condition for optimality and conclude that
the cubic estimator (72) saturates the Rao-Cramer bound.
For present CMB experiments, the terms in the expansion
(84) are evaluated summing over a large number of 	-modes

(	max ∼ 500 for WMAP, 	max 
 2000 for Planck in the
signal-dominated regime), or, equivalently in pixel space,
averaging over a large number of pixels (∼106 and 107 for
WMAP and Planck, resp.). For this reason we expect that
the error made by replacing the fNL-order term in (86) with
its average value will be very small. In [69], an estimate of
this error has been done in the approximation of neglecting
radiative transfer and projection effects (i.e., working in 3D
with the primordial potential, rather than with a CMB map).
The conclusion was that for a number of observations N >
30 the approximation above works very well. Moreover the
variance of the fNL-order term scales like 1/N . In the full
radiative transfer case we expect the scaling to be unchanged,
although the coefficients in front of it that led to the N >
30 estimate might change. However, as noted above, the
number of pixels in present-day experiments is many orders
of magnitude larger than 30. That leads us to conclude that
the approximation of replacing the average of the first-order-
term in equation (86) is a very good one. We then reach the
following important conclusion.

For a rotational invariant CMB sky, in the limit of weak
NG, the cubic estimator defined by formula (72) is the best
unbiased CMB estimator of f loc

NL
Let us now move to problem of generalizing the last

conclusion to shapes different from local. In this case a full
expression of the primordial potential Φ(x) is not available.
The steps that lead to the conclusion that the local fNL

estimator is optimal can thus not be reproduced. However
it was pointed out by Babich in [69] that, in the limit of weak
NG, the full CMB NG likelihood can still be expressed in
terms of its power spectrum and bispectrum by means of an
Edgeworth expansion, regardless of its full expression. The
Edgeworth expansion is basically a way to express a NG PDF
as a series expansion around its Gaussian part [70–72]. For
CMB anisotropies one finds, at the end of the calculation,
that

P
(

a | fNL
)

=
∏
	m

e−a	ma
∗
	m/2C	√

2πC	

⎡
⎣1 +

∑
{	i ,mi}

b	1	2	3G
m1m2m3
	1	2	3

a	1m1a	2m2a	3m3

C	1C	2C	3

⎤
⎦.

(88)

It is easy to see that lnP(a | fNL) takes the same form as in
(84). For this reason all the previous derivation applies also
to the present case and the following conclusion holds.

In the weak non-Gaussian limit and assuming rotational
invariance of the CMB sky, the cubic estimator (72) is the best
unbiased CMB estimator of fNL for any non-Gaussian shape.

Before concluding this section, we would like to stress
that, despite the technical complications arising in the
detailed probe of the bispectrum estimator’s optimality, the
physical reason behind this result is quite clear. We can always
expand the a	m PDF in series of its momenta. The order
parameter of this expansion is ( fNL〈Φ〉). This parameter is
the natural measure of the amplitude of primordial NG,
and it is actually predicted by inflation to be very small.
For this reason higher-order momenta in the primordial
non-Gaussian a	m PDF are suppressed with respect to the
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bispectrum. Basically, the information on fNL in a CMB map
is entirely contained in the three-point function.

3.5.3. Breaking Rotational Invariance. So far, the assumption
of rotational invariance of the CMB sky has been made
when probing the optimality of the cubic estimator (72).
In an ideal situation, the CMB sky is clearly rotationally
invariant. However, two elements break rotational invariance
in a CMB map derived from a real experiment: an anisotropic
distribution of noise in pixel space and a galactic mask.
Anisotropic noise comes from the fact that the CMB sky
is generally scanned in a nonuniform way: regions that are
less contaminated by astrophysical foreground emission are
generally observed more times and are thus characterized
by a lower noise level (see Figure 9, e.g.). A sky cut has
also to be introduced in order to remove the regions on the
galactic plane that are most contaminated by foregrounds.
When rotational invariance is broken, the considerations
of the previous two sections do not strictly apply anymore
and the estimator (72) becomes suboptimal. However, the
same Edgeworth expansion approach that was adopted in the
previous section can still be applied, but this time keeping
rotation-invariance breaking terms in the calculation, in
order to find the new more general form of the optimal
estimator. The general estimator turns out to be the sum of
two terms: the first term is cubic in a	m and is analogous to
the one appearing in the rotationally invariant case, while
the second term is linear in a	m and accounts for breaking of
rotational invariance. The explicit expression of this general
optimal fNL estimator is [73]

E(a) = 1
N

∑
{	i ,mi}

(
Gm1m2m3
	1	2	3

b	1	2	3

(
C−1
	1m1,	4m4

a	1m1

)

×
(
C−1
	2m2,	5m5

a	2m2

)(
C−1
	3m3,	6m6

a	3m3

)

− 3
〈
a	1m1a	2m2a	3m3

〉

×C−1
	1m1,	2m2

C−1
	3m3,	4m4

a	4m4

)
,

(89)

N =
∑
{	i ,mi}

〈
a	1m1a	2m2a	3m3

〉
C−1
	1m1,	4m4

C−1
	2m2,	5m5

C−1
	3m3,	6m6

× 〈a	4m4a	5m5a	6m6

〉
.

(90)

In the rotationally invariant case the a	m covariance
matrix C	1m1,	2m2 is diagonal and equal to C	 , while the linear
term is proportional to a monopole. We then recover the
form of the cubic estimator (72) as expected. Note that in
the signal-dominated regime of the experiment under study
(e.g., 	 � 300 for WMAP and 	 � 1000 for Planck), and if
the mask is not too large, then the simple cubic estimator
(72) is still basically optimal, since we are in a nearly
rotationally invariant case. For small masks it has been shown
by Komatsu and Spergel in [74] that the bispectrum and
power spectrum of the map are, to a good approximation,

just rescaled by a factor fsky, representing the fraction of the
sky left free by the mask; that is,

bmask
	1	2	3

= fskyb
fullsky
	1	2	3

, Cmask
	 = fskyC

fullsky
	 . (91)

In this case one can then assume the covariance matrix
to be diagonal and account for the effects of the mask by
correctly rescaling the normalization term in order to keep
the estimator unbiased. This nearly rotationally invariant
estimator then takes the form

f̂NL = 1
N

∑
{	i,mi}

Gm1m2m3
	1	2	3

b
fNL=1
	1	2	3

a	1m1a	2m2a	3m3 ,

N = fsky

∑
{	i ,mi}

(
Gm1m2m3
	1	2	3

b
fNL=1

	1	2	3

)2

C	1C	2C	3

.

(92)

3.5.4. Large fNL Regime. The approximation of weak non-
Gaussianity is the basis for all of the results derived so far.
One can then ask at which point (i.e., for which values of
fNL) this approximation breaks down. As we observed earlier,
the Edgeworth expansion (88) shows that the likelihood of a
generic primordial NG distribution can be expanded in series
of its momenta, with order parameter O( fNL〈Φ2

L(x)〉). We
know that ΦL ∼ 10−5, while WMAP observations already
constrain fNL � 100. That means that the order parameter
of the PDF expansion is ∼10−3 and thus the weak NG
approximation seems to be a very good one in the entire
range of allowed and predicted fNL. However a subtle effect
has been pointed out by Creminelli et al. [75], which changes
the previous conclusions in certain cases. Let us quickly
summarize their main results. We already saw that, for the
angular averaged bispectrum of a Gaussian temperature field,

〈
B2
	1	2	3

〉
∝ C	1C	2C	3 . (93)

We then included this expression for the variance in the
weights of the optimal estimator (72) and in the normaliza-
tion factor N . It is easy to see that in this approximation the
variance of the estimator can be predicted as

〈
(ΔE)2

〉
=

∑
{	i ,mi}

(
Gm1m2m3
	1	2	3

b	1	2	3

)2

C	1C	2C	3

. (94)

However the approximation of taking fNL = 0 in the
calculation of the estimator variance is not always a good one
if Δ fNL is dominated by squeezed configurations (We recall
that by squeezed configurations we mean triangles in which
one of the sides is much smaller than the other two; that is,
	1 � 	2, 	3.) or more in general by configurations in which
one of the 	’s is small. It turns out that, in these cases, the fNL-
dependent corrections to the Gaussian expectation of the
bispectrum variance become important when fNL gets large
enough. This effect increases the variance of the estimator
with respect to the expectation for fNL = 0. There is a clear
physical interpretation for this. One can see, for example,
by calculating (94) in the simple Sachs-Wolfe case (see also
Section 3.8) that the variance of the estimator scales roughly
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like 1/	max, or equivalently like 1/Npix in pixel space, withNpix

being the number of pixel in the observed map. This increase
of the signal-to-noise ratio with the number of pixels is due
to the fact that more and more bispectrum configurations are
included into the sum over modes to estimate fNL. However,
if the signal is completely dominated by low-	 modes, as
in the local case, then there is an intrinsic large cosmic
variance, due to the small number of low-	 configurations.
Clearly, cosmic variance cannot be beaten by increasing the
resolution of the map. Creminelli et al. [75] then found that,
for Npix getting large, the S/N of the estimator for local NG
grows asymptotically as (lnNpix), that is, much slower than
the expected Npix, which one would obtain by neglecting
fNL-dependent corrections in the calculation of the estimator
variance. They carried out a calculation of the estimator
variance in the flat-sky approximation, and neglected the
transfer functions, to find the following expression:

〈
(ΔE)2

〉
= 1

4ANpix lnNpix

(
1 +

8 f 2
NL fNLANpix

π lnNpix

)
, (95)

where A is the bispectrum amplitude. We clearly see from
this formula what we were stating above; that is, when fNL

gets large, the variance starts scaling like (1/ lnNpix)2. The
same formula also shows the technical point behind this
behaviour: in the correction term, the order parameter is
actually not fNLA1/2 anymore but rather fNLA1/2Npix. This
enhancement by a factor Npix can make the first-order
corrections nonnegligible anymore. The natural question is
now how large an fNL we need to make the correction term
important in (95). Following Creminelli et al. [75], let us
call σ0 the standard deviation of the estimator computed
for f loc

NL = 0. Let us say that for an experiment at a given
angular resolution (defined by 	max in harmonic space or
by Npix in pixel space) a value of f loc

NL is measured, equal
to nσ0. Substituting this value into formula (95) behavior
and calling σ2

fNL
the real estimator variance, one finds the

following relative correction to σ0:

σ2
fNL

σ2
0
− 1 = 2n2

πln2Npix
. (96)

For an experiment like WMAP, the r.h.s. term becomes
∼1 when fNL is about 6σ0 away from the origin. For an
experiment like that of Planck, fNL has to be about 3.5σ0.
The definition of a high- fNL regime is thus dependent on the
experiment under study, as a consequence of the fact that the
enhancement of first-order terms in the variance expression
〈(ΔE)〉 depends on Npix. In other words we can conclude the
following.

If f loc
NL will be detected at several σ (in terms of the Gaussian

expectation for the standard deviation), then fNL-dependent
correction terms in the estimator variance will have to be
taken into account, and the simple expansion (84) of the CMB
likelihood does not constitute a valid approximation anymore.

One caveat in all of this discussion is that formula (95)
was obtained in flat sky, neglecting the transfer functions,
and it should be checked how dependent the final results
are on these approximations. Since the scaling argument is

based on a very general physical reason, that is, the weight of
squeezed configurations in the local fNL estimator discussed
earlier in this section, one expects that the general scaling
with Npix obtained in (95) does not depend on the details
of radiative transfer and 2D projection. Liguori et al. [76]
actually checked the results of this section numerically, by
applying an implementation of the optimal cubic estimator
(72) to full-sky simulations of CMB local NG maps with
different Npix and f loc

NL , including the full radiative transfer
(For details about the numerical implementation of the
optimal cubic estimator, and about the generation of NG
CMB maps, see Sections 3.6 and 3.7. ). Although, as
expected, the coefficients in formula (95) change with respect
to the simple flat sky no radiative transfer approximation,
the scaling of the error bars with Npix follows very well
the expectations, going from ∼1/Npix lnNpix at low fNL to
1/ lnNpix when fNL is detected at high significance. Since in
the large fNL regime the variance starts to scale very slowly,
like 1/ln2Npix, one is led to wonder whether the estimator
discussed in the previous sections becomes suboptimal at this
point and whether a better one can be found. The answer
to this question is not immediate. In order to check for the
optimality of an estimator, as we have seen, one has to see
whether it saturates the Rao-Cramer bound. However, also
the local fNL likelihood and Rao-Cramer bound estimated
in the previous sections have to be recomputed, since they
were obtained neglecting higher-order terms in fNLA1/2.
In order to account for the fNLA1/2Npix-enhanced terms,
it is necessary to produce an exact expression of the full
likelihood. This can be extremely challenging in the full
radiative transfer case, but it is feasible in the flat sky no
radiative transfer approach that we are considering (and
that we showed earlier to be a good approximation as long
as scaling arguments are involved). Creminelli et al. [75]
proceed to calculate the full likelihood in this approximation
and conclude that the optimal cubic estimator of weak local
NG indeed does not saturate the Rao-Cramer bound in
the high- fNL regime. The estimator (72) is thus no longer
optimal in this case. They then proceed (always in the flat sky
no transfer function case) to derive a cubic estimator that
saturates the Rao-Cramer bound also for large f loc

NL . We will
not enter into the details of this derivation here, referring the
reader to the study by Creminelli et al. in [75] for a complete
discussion. The main aim of this section was to show under
which conditions the optimality of the cubic estimator that
we discussed in previous sections is valid. Since current
bispectrum analysis of WMAP data [1, 68] finds that f loc

NL ∼
2σ0, the weak NG approximation applies, and the cubic
estimator we derived earlier is indeed an optimal estimator
in this case. However, if future Planck measurement will
produce a detection of f loc

NL at high significance, then the
estimator will have to be modified in order to account
for the enhanced variance in the high- fNL regime. This is
not necessarily a remote possibility if one considers that
the present central value of fNL from WMAP estimates
would produce a ∼e899 8σ0 detection with Planck. Before
concluding this section we would like to remark once again
that the variance enhancement discussed here applies only
to non-Gaussianity of the local type, whose bispectrum is
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dominated by squeezed configurations, affected by a large
cosmic variance. For the other shapes the cubic estimator
(72) is optimal in both the small- and high- fNL regimes.

3.6. Numerical Implementation of the Bispectrum Estimator.
In this section we turn to the problem of finding an efficient
numerical implementation of the optimal bispectrum esti-
mator (89). Let us repeat its expression here for convenience:

E(a) = 1
N

∑
{	i ,mi}

[
Gm1m2m3
	1	2	3

b	1	2	3

(
C−1
	1m1,	4m4

a	1m1

)

×
(
C−1
	2m2,	5m5

a	2m2

)(
C−1
	3m3,	6m6

a	3m3

)

− 3
〈
a	1m1a	2m2a	3m3

〉

×C−1
	1m1,	2m2

C−1
	3m3,	4m4

a	4m4

]
,

(97)

N =
∑
{	i ,mi}

〈
a	1m1a	2m2a	3m3

〉
C−1
	1m1,	4m4

C−1
	2m2,	5m5

C−1
	3m3,	6m6

× 〈a	4m4a	5m5a	6m6

〉
.

(98)

We remind the reader that this is the full expression,
valid for the general nonrotationally invariant case. For a
rotationally invariant CMB sky the linear term in the formula
above vanishes, and the covariance matrix is diagonal and
reduces to C	 , giving the simplified expression (72) that we
reproduce again here for convenience:

E(a) = 1
N

∑
{	i ,mi}

Gm1m2m3
	1	2	3

b
fNL=1
	1	2	3

C	1C	2C	3

a	1m1a	2m2a	3m3 , (99)

N =
∑
{	i ,mi}

(
Gm1m2m3
	1	2	3

b
fNL=1
	1	2	3

)2

C	1C	2C	3

. (100)

In a schematic way, the full estimator can be written as

E(a) = E cubic(a) + E linear(a)
N

, (101)

where the “cubic” term is the one containing the product
a	1m1a	2m2a	3m3 , while the linear term is the one dependent
on a single a	m and vanishing in the rotationally invariant
case, where it is proportional to a monopole. It was shown
before in a formal way that a pure cubic estimator becomes
suboptimal when rotational invariance is broken, and adding
the linear term is necessary to restore optimality. It is useful
to try to understand the reason of this effect qualitatively
and in a more intuitive way. Let us assume that we have
a map characterized by nonstationary noise, and we are
observing a region of the sky that was sampled many times
so that the noise level in this area is low. That implies that
the level of small-scale power in this large region is lower
than average. Now, for a specific realization of the CMB
sky, this modulation of small-scale power on a large region
can look like a non-Gaussian signal sourcing a squeezed
configuration of the bispectrum. On average, this effect must

cancel if the underlying noise model is Gaussian. However,
this “confusion” between signal and noise increases the
variance of any estimator of a primordial NG signal that
is peaked on squeezed configurations. We know that this
happens for the local model. This heuristic argument thus
shows that, even though in principle a linear term must
always be included when rotational invariance is broken, for
a realistic noise model only local non-Gaussian estimates will
be affected.

3.6.1. Primary Cubic Term for fNL. Let us focus for the
moment on the rotationally invariant case, where the
linear term vanishes, and the covariance matrix is simply
C = C	δ	1	2δm1m2 . We immediately see that a brute force
implementation of equation (99), consisting in computing
and summing over all of the bispectrum configurations,
would take O(	5

max) operations, where 	max, the maximum
multipole in the calculation, depends on the resolution
of the experiment. As mentioned earlier, 	max ∼ 500 for
WMAP and 	max ∼ 2000 for Planck in the signal-dominated
regime. At these resolutions, a brute force approach would
be absolutely unfeasible for a general shape. If however we
assume that the primordial shape under study is separable,
then the dimensionality of the problem can be reduced and
the overall number of operations scaled down significantly,
making the computational cost affordable. Let us illustrate
this point more in detail. Substituting (46) into the estimator
expression (72) and remembering the identity (39),

Gm1m2m3
	1	2	3

=
∫
dΩn̂Y	1m1 (n̂)Y	2m2 (n̂)Y	3m3 (n̂), (102)

it is possible to rewrite (99) as follows (or more in general as
a linear combination of terms of the following kind):

E(a) = 1
N

∫
drr2

∫
dΩn̂

∑
	1m1

a	1m1X	1 (r)Y	1m1 (n̂)
C	1

×
∑
	2m2

a	2m2X	2 (r)Y	2m2 (n̂)
C	2

×
∑
	3m3

a	3m3X	3 (r)Y	3m3 (n̂)
C	3

+ perm.

(103)

From an inspection of previous formula we see how, as a
direct consequence of separability, the initial sum over the
indices 	1	2	3,m1m2m3 has been factorized in the product of
three sums, each running over two indices 	,m. This greatly
reduces the computational cost from O(	5

max) to O(	3
max)

operations. If we define the new quantities

MX(r, n̂) ≡
∑
	m

a	mX	(r)
C	

Y	m(n̂),

MY (r, n̂) ≡
∑
	m

a	mY	(r)
C	

Y	m(n̂),

MZ(r, n̂) ≡
∑
	m

a	mZ	(r)
C	

Y	m(n̂),

(104)
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then we can recast the estimator expression above in the
following form:

E(a)

= 1
N

∫
drr2

∫
dΩn̂MX(r, n̂)MY (r, n̂)MZ(r, n̂) + perms,

(105)

where it is evident that we are now calculating our statistic
in position space rather than in pixel space. Note how the fil-
tered maps MX , MY , MZ can be efficiently calculated using
a fast harmonic transform algorithms such as those included
in the HEALPix package. This fast position space algorithm
was initially introduced by Komatsu et al. in [77] in the
context of local fNL estimation and applied to the estimation
of WMAP 1-year data by the WMAP team by Komatsu et
al. in [78]. It was then applied to equilateral fNL estimation
for the first time in study of Creminelli et al. in [73]. An
alternative numerical implementation with respect to the
one used by the aforementioned authors was introduced
by Smith and Zaldarriaga in [22]. Although different under
many technical aspects, this second algorithm is still based on
the calculation of the position space statistic (105); we refer
the reader to the original work for additional details. This
second implementation has been used to produce alternative
estimates of f loc

NL , and f
eq.

NL from WMAP data, and to estimate
the amplitude of the orthogonal shape, recently introduced
by Smith et al. in [18].

Let us now discuss the possible limitations of this
numerical approach. As noted in Section 2, the separability
condition is in principle quite restrictive: the only separable
shape arising directly from primordial models of inflation
is the local one. On the other hand, it is still possible to
study nonseparable models by finding separable shapes that
are highly correlated to the primordial one. As observed in
studies by Creminelli et al. in [73], Fergusson and Shellard
in [9], and Smith and Zaldarriaga in [22], the fNL limits
obtained from a highly correlated separable shape in this way
will be very close to those that would have been obtained
using the original nonseparable model (see again Sections 2,
3.2, and 2.2 for a detailed discussion of this issue). We know
from earlier sections that the other two shapes mentioned so
far in this section besides local, namely, the equilateral and
orthogonal shapes, have actually been derived as separable
approximations of theoretical inflationary shapes. These
approximations were obtained in an heuristic way; that
is, an educated guess of a good separable approximation
of the shape under study was made, and the correlation
was checked a posteriori. There is obviously no a priori
guarantee that this approach would be easily repeatable
for all of the shapes of interest. The eigenmode expansion
method introduced in [14] and summarized by equation
(26), however, provides a general and rigorous method to
find separable approximations of any shape, thus enabling
the estimation of any possible primordial model. In this
case, recall that we expand our (nonseparable) primordial
shape function in terms of the separable basis functions Qn

(see (26)), constructed from symmetric polynomial products
qp(k), as

S(k1, k2, k3) =
∑
prs

αprsqp(k1)qr(k2)qs(k3),−→ bl1l2l3

= Δ2
Φ fNL

∑
prs

αprs

∫
x2dxq 	1

{p q
	2
r q 	3

s} ,
(106)

where the second expression for the reduced bispectrum
b	1	2	3 (56) expands in convolved basis functions (57) in
harmonic space with

q l
p(x) = 2

π

∫
dkqp(k)Δl(k) jl(kx). (107)

In the mode expansion approach, then, the fNL estimator for
a specific model generalises to the following:

E(a) = 1
N

∑
prs

αprs

∫
drr2

∫
dΩn̂ M{p(r, n̂)Mr(r, n̂)Ms}(r, n̂),

(108)

where the filtered maps or shells Mp(r, n̂) are defined by

Mp(r, n̂) =
∑
lm

q l
p
almYlm
Cl

. (109)

Defining the integral βprs ≡
∫
drr2

∫
dΩn̂M{pMrMs}, the

estimator collapses into the compact form

E(a) = 1
N

∑
prs

αprsβprs, (110)

where it is possible to show a precise relationship between
the theoretical bispectrum expansion coefficients αprs and
expectations for the observed coefficients βprs.

It was also pointed out by Fergusson et al. in [14]
(see also [6]) and summarized in formula (60) that the
separation can be performed directly in harmonic space on
the reduced bispectrum b	1	2	3 , rather than on the primordial
shape S(k1, k2, k3). This provides an alternative, but equiv-
alent, late-time fNL-estimation pipeline with respect to the
primordial shape separation approach given above as (110).
In fact, since orthonormality is more direct on the harmonic
domain without the intervention of transfer functions, the
approach is considerably more straightforward conceptually.
In this case, expectations for the observational expansion
coefficients in the orthonormal frame Rn (with n ↔ {prs},
see (60)) become simply 〈βR

n 〉 = αR
n , that is, for an ensemble

of maps possessing the theoretical bispectrum described
by the coefficients. This means that for a NG bispectrum
signal of sufficient significance we can consider directly
and efficiently reconstruction of the bispectrum from the

observed coefficients β
R

n using (60). We also note that
the harmonic space separation scheme also allows for the
estimation of noninflationary late-time bispectra, such as
the bispectrum of cosmic strings, as well as other secondary
anisotropies.
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We can then conclude, in light of these developments,
that the fast cubic statistic (105) can be applied in complete
generality to any model of primordial NG, as well as to
any other potential source of CMB NG. We also point
out that alternative approaches have been considered for
harmonic space fNL analysis using wavelets and binning. For
example, Bucher et al. [58] recently proposed using a suitable
binning scheme in which the full expression for b	1	2	3 is
calculated in a subset of all of the triples 	1, 	2, 	3, small
enough to make the calculation feasible while maintaining
calculation accuracy. Approaches based on a harmonic space
separation scheme, of course, require the full calculation of
the reduced bispectrum b	1	2	3 in order to determine the
correlation between the theoretical prediction and the final
expanded or binned bispectrum. The calculation of b	1	2	3

implies the necessity of numerically solving the radiative
transfer integral (31) for all of the configurations 	1, 	2, 	3

which appears to be intractable in the nonseparable case,
since the dimensionality of the problem cannot be reduced.
However, this can be achieved efficiently in the general case
using either the separable mode expansion integral (56) or
else the hierarchical adaptive approach of Fergusson and
Shellard [6] discussed in Section 3.4.

3.6.2. Linear Correction Term for fNL. Let us now consider
the realistic situation in which inhomogeneous noise and a
sky-cut break rotational invariance (see Figure 9). In this case
two complications arise as

(1) A linear term in a	m has to be added as follows.

(2) The a	m covariance matrix is now no longer diagonal.
The inverse covariance weighting C−1a that appears
in expression (97) is hard to compute numerically
for high angular resolution experiment, since its size
makes a brute force numerical inversion impossible.

A first approach, introduced by Creminelli et al. in [73],
is to simplify the problem by assuming that the covariance
matrix is diagonal in the cubic term of the estimator, and
then finding the linear term that minimizes the variance
under this assumption. In other words, we keep the cubic
term in the form of (99) and compute the variance of this
term, relaxing the assumption of isotropy at this point (This
means that, when we apply Wick’s theorem to the a	m six-
point function in the calculation of the cubic term variance,
we take 〈a	1m1a	2m2〉 = C	1m1,	2m2 instead of 〈a	1m1a	2m2〉 =
C	1m1δ	1	2δm1m2 . ).

It turns out that the variance is minimized (while leaving
the estimator unbiased) for the following choice of the linear
term:

Elin = − 3
N

∑
{	i ,mi}

Qm1m2m3
	1	2	3

b
fNL=1
	1	2	3

C	1C	2C	3

C	1m1,	2m2a	3m3 , (111)

where N = fsky
∑

	1	2	3
(B2

	1	2	3
/C	1C	2C	3 ) is the normal-

ization term. Despite being suboptimal with respect to a
full implementation of (97), this choice of linear term has
been shown to significantly improve the error bars with
respect to the simple cubic statistic (99) in presence of

anisotropic noise. At the same time, the simplicity of this
implementation in comparison to the full optimal statistic
(97) is manifest, since no C−1 terms appear in (111). Let us
consider again a separable primordial bispectrum shape that
can be written as S(k1, k2, k3) = X(k1)Y(k2)Z(k3) + perm.
Applying the same procedure as we did for the cubic term,
the linear term can be recast in the form

Elin = − 3
N

∫
drr2

∫
dΩn̂

×
⎛
⎝∑
	1m1

X	1 (r)
C	1

Y	1m1 (n̂)
∑
	2m2

Y	2 (r)
C	2

Y	2m2 (n̂)

×
∑
	3m3

Z	3 (r)
C	3

Y	3m3 (n̂)
〈
a	1m1a	2m2

〉
a	3m3 + perm.

⎞
⎠,

(112)

where we explicitly wrote C	1m1,	2m2 as 〈a	1m1a	2m2〉. This last
formula can be rewritten as

Elin = − 6
N

∫
drr2

∫
dΩn̂

∑
	m

[
X	(r)
C	

〈MY (r, n)MZ(r, n)〉

+
Y	(r)
C	

〈MX(r, n)MZ(r, n)〉

+
Z	(r)
C	

〈MX(r, n)MY (r, n)〉
]
.

(113)

Like for the cubic part of the estimator, we have rewritten the
linear term as a fast position space integral. The ensemble
averages appearing in the last formula can be computed
as Monte Carlo averages over a large number of Gaussian
realizations of the CMB sky, characterized by the same beam,
mask, and noise properties as in the experiment under
study. This pseudooptimal, but relatively straightforward,
implementation of the linear term has been adopted by a
number of groups in order to estimate f loc

NL from WMAP
data [1, 73, 75, 79]. The full optimal estimator (89) was
implemented only quite recently by Smith et al. in [68],
where the authors developed an efficient conjugate gradient
inversion (see e.g., [80]) algorithm based on earlier results
from the study of Smith et al. in [81], in order to compute
the C−1a prefiltering in reasonable CPU time. Note that after
the inverse covariance matrix prefiltering is calculated, the
numerical implementation of the estimator is very similar
to the one outlined above for the pseudooptimal case. The
new position space statistic is obtained from formulae (105),
(113), by making the following replacements, wherever the
corresponding quantities appear:

a	m −→ afiltered
	m ≡ (

C−1a
)
	m,

MX(r, n̂) −→ M̃X(r, n̂) ≡
∑
	m

a	mX	(r)Y	m(n̂),

X	(r)
C	

−→ X	(r),

(114)
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Figure 9: (a) The KQ75 galactic and point-source mask used for non-Gaussian analysis of WMAP data. (b) Anisotropic distribution of the
noise for a coadded map of the WMAP V and W frequency channels. These two features break rotational invariance of the observed CMB
sky and spoil the optimality of the standard cubic statistic (72), unless an additional “linear term” is included, as explained in the main text.
Data are obtained from the LAMBDA website, http://lambda.gsfc.nasa.gov/index.cfm.

with analogous substitutions to be made for the Y , Y,Z, Z
terms appearing in the same equations. The improvement in
error bars from the pure cubic suboptimal estimator to the
pseudooptimal and optimal statistics is shown in Figure 10.

3.7. Experimental Constraints on fNL. In order to obtain
an estimate of fNL from a given dataset, one has first to
generate sets of Gaussian CMB maps and obtain the MC
averages that appear in the linear term expression (113),
after an inverse covariance prefiltering of the full-optimal
estimator is implemented. The normalization term N can
be precomputed using formula (46) to evaluate numerically
the theoretical bispectrum shape for the model we want to
estimate. The statistic (97) can then be computed for the
experimental data aobs to get our result:

f̂NL(aobs) ≡ E cubic(aobs) + E linear(aobs)
N

. (115)

The error bars are then obtained by running the estimator
on simulated Gaussian maps (The error bars can be obtained
from Gaussian simulations as long as the weak NG approx-
imation applies. As we saw earlier, this works at any fNL

for any shape, except for the local shape when a large f loc
NL

makes the error bars fNL dependent. In this case the error
bars would need to be calculated from NG simulations of
f loc
NL . So far, no high-significance detection of f loc

NL has been
reported, so working with G maps is at this stage sufficient to
get accurate error bars. ):

σ f̂NL
=
√〈(

f̂NL(asim)
)2
1

MC
, (116)

where 〈·〉MC indicates the MC average and asim a vector
of simulated multipoles (obviously including mask, beam,
and noise features of the experiment). For an accurate
step-by-step description of an fNL analysis of WMAP data,
including details about channel coadding, noise model,
beams, and pixel weighting schemes, we refer the reader to
the explanations contained in the study of Komatsu et al. in
[1]. The most stringent limits so far have been obtained by

applying the bispectrum estimator to the WMAP datasets.
Constraints have been put on the local, equilateral, and
orthogonal shapes. The best constraints come from the full
implementation of the optimal estimator done in the study
of Smith et al. in [68] and in that of Senatore et al. [18], and
applied to the WMAP 7-year data release as in the study of
Komatsu et al. in [83]. They are, at 95% C.L.,

− 10 < f loc
NL < 74, (117)

− 214 < f
equil.

NL < 266, (118)

− 410 < f ortho.
NL < 6. (119)

Since the first release of WMAP data, different groups have
used the cubic statistic described in the previous paragraph,
either in its pure cubic form (105) or in the improved version
including the pseudooptimal linear term implementation
(113). The results of different analyses of the WMAP 1-
year, 3-year, 5-year, and 7-year datasets are summarized and
commented in Table 3, where just the local and equilateral
shapes have been included since the only two constraints on
the orthogonal shape have been produced to date. The most
recent orthogonal constraint has been already mentioned in
(117). The other was obtained by Smith et al. [18] on WMAP
5-year data and it is −369 < f ortho.

NL < 71.

3.8. Fisher Matrix Forecasts. The fisher matrix, defined as
the curvature of the likelihood function calculated in its
peak reassessment (see equation (A.3) in the appendix),
plays a very important and well-known role in parameter
estimation theory, not only because it defines the optimality
of estimators through the Rao-Cramer bound, but also
because it allows us to estimate a priori what the smallest
error bars attainable will be for a given parameter (see again
appendix). In other words, using the Fisher matrix we can
forecast how well a parameter will be measured by a given
experiment. This is very useful in order to optimize the
experimental design to the detection of the parameters of
interest. In our specific case, a Fisher matrix analysis will help
us to understand what the smallest fNL detectable in principle
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Figure 10: Error bars (obtained from Gaussian simulations) for the pure cubic (triangles) and pseudooptimal (stars) implementations of
the bispectrum estimator, to be compared to the solid red line, representing the Fisher matrix (Rao-Cramer) bound, saturated by the full-
optimal statistic described in the text. (a) Error bars as a function of the maximum multipole included in the analysis. (b) Error bars as a
function of the fraction of the sky considered in the analysis. This analysis included both temperature and polarization data, from the study
by Yadav et al. in [82].

using different CMB datasets is, and which experimental
features can be improved in order to increase the sensitivity
to fNL.

3.8.1. A General Derivation. Formula (A.12) from appendix,
when applied to our case, yields

F fNL fNL =
1
6

	max∑
	1	2	3=2

(
B
fNL=1
	1	2	3

)2

C	1C	2C	3

, (120)

where B	1	2	3 is the angular averaged bispectrum (i.e., the
measured quantity). This can be rewritten in terms of the
reduced bispectrum as

F fNL fNL =
1
6

	max∑
	1	2	3=2

I2
	1	2	3

(
b
fNL=1
	1	2	3

)2

C	1C	2C	3

, (121)

where we have defined (see also wl1l2l3 in (58))

I	1	2	3 =
√

(2	1 + 1)(2	2 + 1)(2	3 + 1)
4π

(
	1 	2 	3

0 0 0

)
. (122)

Note how the features of the experiment enter the Fisher
matrix through the parameter 	max, defining the angular
resolution, and in the angular power spectrum expression
in the denominator, which contains the angular beam and
experimental noise:

C̃	 = C	W
2
	 +N	 , (123)

where C	 is the theoretical power spectrum for a given set of
cosmological parameters, W	 is the beam of the experiment,
and N	 is the experimental noise. N	 is a constant for
uncorrelated noise. Likewise, the theoretical bispectrum will
be convolved by the experimental beam

B	1	2	3 = B	1	2	3W	1W	2W	3 . (124)

Note that, since the noise is generally Gaussian, its three-
point function vanishes. The experimental noise thus only
enters in the denominator of the Fisher matrix expression.
The effects of partial sky coverage can be easily accounted for.
From (91) it follows that if only a fraction fsky of the full sky
is covered then the Fisher matrix takes an fsky factor in front,

which produces a degradation of the error bars of
√
fsky.

We saw previously that for separable shapes the reduced
bispectrum can be calculated either analytically, under some
simplifying assumptions on the transfer functions (e.g.,
the Sachs-Wolfe approximation), or numerically through
formula (43). It is then possible to evaluate numerically the
Fisher matrix and the corresponding error Δ fNL ≡

√
1/F.

In the context of fNL estimation, the first calculation of this
kind was done for f loc

NL by Komatsu and Spergel in [74],
where it was found that WMAP could reach a sensitivity
Δ fNL = 20 (note how this bound is actually saturated by
the optimal estimator results presented in Table 3), while
Planck [85] could go down to Δ fNL = 5. (Note that all of
the errors quoted in this section are at 1 − σ . ) What allows
Planck to improve on WMAP is that it has a much better
angular resolution and that it is cosmic variance dominated
in a very large range of scales; that is, the power spectrum
signal C	W2

	 is larger than the noise N	 up to 	max =
2000. Angular resolution and sensitivity are the two factors
that increase the ability of a CMB experiment to constrain
fNL. This information is provided by the Fisher matrix
expression (121). Looking at such expression, we notice how
the signal-to-noise ratio is obtained by adding over all of
the bispectrum configurations up to 	max, weighted by their
variance. Thus, the higher 	max is, the more configurations
are included in the sum and the larger is the final sensitivity
to fNL. On the other hand, we see that, if the power spectrum
of the instrumental noise appearing in the variance term in
the denominator dominates from a certain 	S=N , then the
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Table 3: Constraints on f localNL , f
equil.
NL , obtained by different groups on the one-year (W1), three-year (W3), five-year (W5), and seven-year

(W7) WMAP data releases. Different rows correspond to the different implementations of the fNL estimator described in the text: the “pure
cubic” implementation (99) in which no linear term is included, the “pseudooptimal” implementation (113) in which a linear term is added
but the covariance matrix is assumed to be diagonal in the cubic term, and the fully “optimal” implementation (97). As we noted in the
text, the linear term is important mostly for estimates of local NG, since anisotropic noise “mimics” squeezed configuration. For this reason
“pure cubic” estimates of equilateral NG in the table are nearly optimal, while local ones are significantly suboptimal, especially because
they have to be confined to the pure signal-dominated region l � 300, where the assumption of rotational invariance is correct. There is a
certain degree of friction between some of the results shown. In particular the 27 < f locNL < 147 WMAP 3-year estimate obtained by Yadav
and Wandelt in [79], corresponding to a “nearly 3-σ” detection of local NG, seems not to agree well with the 9 < f locNL < 129, ∼ 2.3σ result
obtained on the same dataset by Smith et al. in [68]. The origin of the discrepancy is unclear, although it is argued by Smith et al. in [68]
that it might be due to differences in the coadding scheme of different data channels, or analogous differences in the choice of some weights.
As pointed out in Smith et al. [68], one additional advantage of the fully optimal implementation of the estimator is actually that all of the
ambiguity related to the use of different coadding schemes disappears, since the optimal coadding strategy is automatically selected in the
inverse covariance filtering process. Another discrepancy is that between the two equilateral constraints on WMAP 5-year data. It seems that
the pseudooptimal estimator produces better constraints than the optimal one. This is clearly not possible. Smith et al. [68] claim that their
numerical pipeline calculates the theoretical ansatz for the bispectrum shape more accurately than it was done before. That is due to a subtlety
that went unnoticed in previous works, consisting in the necessity to extend above the horizon the upper integration limit in the calculation
of the equilateral shape-related quantities β	(r), γ	(r), and δ	(r) (see (54)). This is required in order to obtain stable numerical solutions,
and it calls for a reassessment of the expected and measured error bars, which actually increase with respect to previous calculations.

Local Equilateral

Pure cubic
−58 < fNL < 134 [78], W1 −366 < fNL < 238 [73], W1

−54 < fNL < 114 [84], W3 −256 < fNL < 332 [73], W3

Pseudooptimal

−27 < fNL < 121 [73], W1 −151 < fNL < 253 [1], W5

−36 < fNL < 100 [73], W3

27 < fNL < 147 [79], W3

9 < fNL < 129 [68], W3

−9 < fNL < 111 [1], W5

Optimal
12 < fNL < 104 [68], W3 −125 < fNL < 435 [68], W5

−4 < fNL < 80 [68], W5 −214 < fNL < 266 [83], W7

10 < fNL < 74 [83] W7

signal contribution is suppressed above that threshold by the
noise power spectra appearing in the denominator of (121).
So what determines the sensitivity of a CMB experiment to
fNL is the range of 	 over which the instrumental noise is low,
so the experiment is cosmic variance dominated. This range
is 	 � 2000 for Planck and 	 � 500 for WMAP, hence Planck
can obtain tighter constraints than WMAP. This is shown
in Figure 11, where the Fisher matrix forecasts of fNL are
plotted for different CMB experiments: the predicted error
bars decrease with 	 up to the angular scale at which the
measurements start to be noise dominated, after which the
fNL signal-to-noise ratio saturates. A simple calculation done
by Babich and Zaldarriaga in [86] taking the Sachs-Wolfe
approximation, and working in flat sky, showed that, before
noise dominates, the signal-to-noise ratio for the local shape
grows as

S

N
∝ 	max ln

(
	max

	min

)
, (125)

where the (ln) is dictated by the coupling between large and
small scales introduced by squeezed configurations, from
which most of the local signal comes.

Note also how, in absence of experimental noise, the
beams in the numerator and in the denominator of (121)
cancel each other out. An ideal noiseless CMB experiment

would then have a signal-to-noise ratio indefinitely growing.
However, this would not imply infinite sensitivity to fNL,
because, above a certain 	max, secondary anisotropies would
start to dominate. The Fisher matrix analysis of the equi-
lateral shape (see [22, 87], e.g.) showed that the minimum
achievable error bars in this case are Δ fNL ∼ 100 and Δ fNL ∼
60, for WMAP and Planck, respectively. (Note how the larger
error bars in this case with respect to the local constraints
do not reflect a higher sensitivity of CMB measurement to
f loc
NL , but only the conventional choice of the normalization

of the bispectrum amplitude in the definition of fNL. The
normalizations are in fact chosen in such a way that the
bispectra have the same value for equilateral configurations
	1 = 	2 = 	3, where the local bispectrum is suppressed and
the equilateral bispectrum is peaked.) Additional shapes are
studied by Smith and Zaldarriaga in [22].

3.8.2. Polarization. Babich and Zaldarriaga [86] showed with
a Fisher matrix analysis that the CMB E-mode polarization
measurements can be used to improve the sensitivity to
fNL. Although we have dealt so far only with temperature
bispectra and related estimators, including polarization is
fairly straightforward. As usual, the calculation starts from
formula (31) linking the multipoles of CMB anisotropies
to the primordial potential Φ, but this time including the
polarization radiative transfer ΔE	 (k) in the convolution
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integral:

aE	m = 4π(−i)l
∫

d3k

(2π)3 ΔE	 (k)Φ(k)Y	m
(

k̂
)
. (126)

The bispectrum is then defined in the usual way, but this time
more configurations can be built by correlating temperature
and polarization multipoles:

BTTT	1	2	3
≡
〈
aT	1m1

aT	2m2
aT	3m3

〉
,

BTTE	1	2	3
≡
〈
aT	1m1

aT	2m2
aE	3m3

〉
,

BTET	1	2	3
≡
〈
aT	1m1

aE	2m2
aT	3m3

〉
,

...

BEET	1	2	3
≡
〈
aE	1m1

aE	2m2
aT	3m3

〉
,

...

BEEE	1	2	3
≡
〈
aE	1m1

aE	2m2
aE	3m3

〉
.

(127)

The point to emphasize is that the polarization signal
is generated on scales where the temperature signal is
suppressed by Silk damping. The reason behind this can
be briefly illustrated as follows: both the temperature and
the polarization patterns that we observe in the CMB are
produced by Thomson scattering of photons by electrons
in the primordial plasma. Due to the Physics of Thomson
scattering, in order for polarization to be generated it is
necessary for the incident radiation field to be anisotropic
(see, e.g., [88]). More precisely, the angular distribution of
the intensity of the incoming radiation must present a non-
vanishing quadrupole. However the Thomson scattering
itself tends to isotropize the incoming radiation field. For
this reason, on scales where the Thomson scattering is
efficient (i.e., in the tight coupling regime of the photon-
baryon fluid), polarization is not produced. In order to
seed a significant quadrupole in the incoming photon
distribution it is necessary to go below the free streaming
scale of the photons in the primordial plasma, where the
weak coupling between photons and electrons makes the
isotropization process inefficient. However at these scales
the free diffusion of photons with different temperatures
damps the temperature fluctuations (a phenomenon known
as Silk damping). For this reason we conclude that, on scales
where temperature anisotropies are generated, polarization
anisotropies are basically absent (because in the tight cou-
pling regime the radiation intensity distribution does not
present a quadrupole), and vice versa on scales where polar-
ization is produced, temperature anisotropies are damped by
diffusion processes. (This is strictly true only if we consider
anisotropies generated at recombination. If we include a
period of Early Reionization, then this picture is slightly
changed, since after reionization polarization is generated on
very large scales, where temperature anisotropies are present
as well. For more details see, for example, [54] and references
therein.)

The polarization bispectra thus open a window over a
new k-range in the 3D → 2D projection k → 	 and
increase the overall information available. In other words,
since the new configurations TTE, TEE, and so forth,
including polarization, are partially independent of the pure
temperature (TTT) bispectrum, adding those additional
configurations to the Fisher matrix (and to the actual fNL

estimation from data) increases the total signal available. The
Fisher matrix expression now becomes

F =
∑
pqr

∑
i jk

∑
	1	2	3

B
pqr
	1	2	3

[
cov−1]	1	2	3

pqr|i jkB
i jk
	1	2	3

, (128)

where i, j, k, p, q, and r run over the T and E superscripts. We
still work in the assumption that all of the quantities involved
are Gaussian, but now the different bispectra of temperature
and polarization are correlated for a given configuration
	1, 	2, 	3, thus defining a multivariate Gaussian distribution.
The full covariance matrix between bispectra (indicated by
cov in the formula above) has then to be evaluated. A
numerical evaluation of (128) shows [86] that, for an ideal
(i.e., noiseless) experiment, adding the polarization signal
produces an improvement of a factor ∼ 2 on fNL constraints.
For WMAP, adding polarization bispectra produces very
little improvement, since polarization data are mostly noise
dominated. For Planck, however, including polarization does
generate a significant improvement, bringing the forecasted
error bars from Δ fNL 
 5 to Δ fNL 
 3.5. Some error bar
forecasts from temperature and polarization bispectra as a
function of 	max for different experimental designs including
WMAP and Planck are shown in Figure 11. Motivated by this
analysis, Yadav et al. [82, 89] have implemented a bispectrum
estimator of fNL including both temperature and polar-
ization bispectra. All of the general considerations about
optimality and the numerical implementation techniques
described in previous sections apply in an analogous way to
the temperature + polarization case, although the presence
of additional bispectra with a nontrivial covariance matrix
introduces a few additional technical complications. We refer
the reader to the study by Yadav et al. in [82, 89] for further
discussion.

3.9. Non-Gaussian Contaminants. So far, we have considered
only primordial non-Gaussianity as a source of the three-
point function of the CMB. However many other astro-
physical and cosmological effects can produce an observable
angular bispectrum. Among these, diffuse astrophysical fore-
ground emission (see, e.g., [91, 92] and references therein)
unresolved point sources (see, e.g., [78]) and secondary
anisotropies are probably the most important NG sources.
Since the main focus in this review is on the primordial
bispectrum, we will not describe these NG sources in great
detail. We will however outline in this section their main
effects in order to understand whether, and how, they could
contaminate an estimate of primordial NG. Let us consider
a number Ns of sources of a CMB bispectrum signal and
call Bi	1	2	3

the bispectrum produced by the ith source. Let

us also indicate with B
fNL=1
	1	2	3

the primordial component of
the bispectrum calculated for fNL = 1. For our purposes,
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Figure 11: The Fisher matrix forecasts on Δ fNL, featured for different experiments: WMAP (green, dotted lines), Planck (red, dashed lines),
and the proposed CMBpol [90] survey (blue, solid lines). (a) shows results for the local shape, while (b) refers to the equilateral shape. Thin
lines are obtained from temperature data only, and thick lines show the improvement in the error bars coming from adding polarization
datasets to the analysis for the various experiments.

B
fNL=1
	1	2	3

is the signal that we want to measure, while the
other bispectra are contaminants that we would like to
eliminate. The total bispectrum of the map in presence of
these contaminants is then

B	1	2	3 = fNLB
fNL=1
	1	2	3

+
Ns∑
i=1

AiB
i
	1	2	3

, (129)

where Ai is the amplitude of the ith bispectrum. If we
have a precise prediction of the bispectra generated by
the contaminants, we can then think of extending our
fNL estimator to a joint estimator of all of the amplitude
parameters. The optimal cubic fNL estimator defined in (72)
would then be generalized to the multiparameter case by
minimizing the following χ2:

χ2( fNL,Ai
) = ∑

	1	2	3

(
fNLB

fNL=1
	1	2	3

+
∑Ns

i=1 AiB
i
	1	2	3

− Bobs
	1	2	3

)

C	1C	2C	3

.

(130)

The new errors on fNL in this case can be forecasted as
usual by means of a Fisher matrix analysis. The Fisher matrix
described in the previous paragraph can be generalized
straightforwardly to the multiparameter case. In this case, F
becomes an array whose entries are defined as

Fi j =
∑
	1	2	3

Bi	1	2	3
B
j
	1	2	3

C	1C	2C	3

. (131)

The optimal errors on a given amplitude Ai (including fNL)
then become, according to the multidimensional generaliza-
tion of the Rao-Cramer bound,

ΔAi =
√

(F−1)ii, (132)

where the crucial point to notice is that we now first invert
the Fisher matrix and then we take the square root of
the diagonal elements to find the errors. This is the error
that is obtained when the full joint-parameter likelihood
is calculated and then the 1-dimensional likelihood for a
given parameter is obtained by integrating out all of the
other degrees of freedom: a process defined in statistics as
marginalization. One can see that the inverse of the Fisher
matrix defines the covariance matrix of the parameters under
study. If the various parameters are completely uncorrelated,
then the Fisher matrix is diagonal and we would have
F−1
ii = (F−1)ii, showing that the parameters can obviously

be estimated independently and the marginalization process
does not change the error bars on a given parameter of
interest (in our case fNL). If the different parameters are
correlated, however, then off-diagonal terms appear in the
Fisher matrix, and the error bars after marginalization
(i.e., the “real” error bars to quote in the results) are
larger than those that would have been obtained by naively
neglecting contaminants. An obvious but useful observation
is that two bispectral amplitudes will be strongly correlated
when the respective shapes are similar. To make a practical
example, the bispectrum generated by correlating weak
lensing of CMB anisotropies with the Integrated Sachs-
Wolfe (ISW) effect can be shown to be peaked on squeezed



30 Advances in Astronomy

configurations. For this reason the presence of this effect
can be a significant contaminant for estimates of local
non-Gaussianity.

So far, in this section we have described the degradation
effects on the error bars if a hypothetical joint estimator
of all of the CMB bispectrum amplitudes was built, and
the amplitudes of contaminants were marginalized over to
estimate fNL. However a joint estimation might be difficult,
due to factors like the presence of theoretical uncertainties
on the shapes of contaminant bispectra or possible practical
difficulties in finding an efficient implementation of this
full bispectrum-likelihood estimator (e.g., if the additional
secondary bispectra are nonseparable). As a result, the
practical approach so far has been to estimate only fNL

using the techniques described in previous sections and
neglect possible nonprimordial contaminants. In this case
the possible effect of contaminants would not show up as
a degradation of the error bars but in an even worse way,
by introducing a bias in the fNL measurements. Let us see
this by assuming that the CMB three-point function takes
contributions both from a primordial NG component and
from a contaminant bispectrum with amplitude Ai. Let us
also assume that we can produce a set of NG Monte Carlo
simulations of CMB maps including both bispectra. We
assign a given fNL in input to the primordial component
of our simulated maps. Finally we estimate the average fNL

obtained from the simulations by applying the usual optimal
cubic statistic described so far. The result of our MC average
will be

〈
f̂NL

〉
= 1

N

∑
	1	2	3

B
fNL=1
	1	2	3

Bobserved
	1	2	3

C	1C	2C	3

= fNL +
1
N

∑
	1	2	3

B
fNL=1
	1	2	3

Bcont.
	1	2	3

C	1C	2C	3

,

(133)

where Bobserved is the averaged bispectrum extracted from
the map. The fNL term on the r.h.s. of the second line
comes from the fact that the normalization N is chosen
in such a way as to obtain an unbiased estimator of the
primordial component. However a second term is present,
which accounts for the fact that a contaminant bispectrum,
Bcont.
	1	2	3

, is in the map; this term clearly biases the estimator.
(Let us remember with that by definition an estimator of

a parameter λ (in our case fNL) is unbiased if 〈λ̂〉 = λ, λ̂
being the estimate from data and λ being the true parameter
of the underlying model.) The magnitude of the bias will
depend again on how similar the shape of the contaminant
bispectrum is to the primordial one. If, for example, the
contaminant bispectrum is strongly peaked on equilateral
configurations and suppressed on squeezed ones, a local
estimator of NG will then not be significantly biased by it,
since the second term in equation (133) will cancel out.

However, an estimate of f
equil.

NL will in this case be significantly
biased.

In general we can define the correlation coefficients
between two bispectra, labeled i and j, as

ri j

=
∑

	1	2	3

((
B(i)
	1	2	3

B
( j)
	1	2	3

)
/
(
C	1 C	2C	3

))
√(∑

	1	2	3
B(i)2
	1	2	3

)
/C	1C	2C	3

√(∑
	1	2	3

B
( j)2
	1	2	3

)
/C	1C	2C	3

.
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The definition of “correlation coefficient” becomes com-
pletely transparent if we rewrite the previous formula in
terms of the Fisher matrix and keep in mind that F−1 defines
the covariance matrix of the bispectrum amplitudes:

ri j =
(
F−1

)
i j√

(F−1)ii(F−1) j j
. (135)

The correlation coefficient varies by definition from 0, for
totally uncorrelated shapes, to 1, for identical shapes, or
−1 for totally anticorrelated shapes. The more a given
contaminant bispectrum is correlated to the primordial
bispectrum that we want to measure, the larger will be the
induced bias. At this point we distinguish between three
possibilities. The first is that the contaminant bispectrum
shape and amplitude are perfectly known. In that case we
can compute the expected bias from formula (173) and
subtract from our estimate. The second possibility is that
the shape of the contaminant bispectrum is known, but
its amplitude is defined with a given uncertainty. In this
case we can propagate this uncertainty by quoting it in
addition to the statistical error bars on fNL obtained in
the usual way. The third and worst possibility is that we
are unaware of the presence of some contaminant effect,
or we know nothing about its bispectrum. In this case we
might obtain a biased estimate of fNL without knowing
it and thus eventually misinterpret a spurious NG effect
as primordial NG. Contaminants are then very dangerous,
because, if not properly taken into account, they can lead
to spurious claim of detection of primordial NG. For this
reason, if a positive detection of fNL were to be made at some
point for a certain model, all possible tests for the presence
of contaminant effects should be performed. Moreover,
since we cannot be absolutely sure that we are considering
all possible sources of NG contamination, cross-validation
of the result using other non-bispectrum-based estimators
will be very important. These other estimators (Minkowski
Functionals, wavelets, needlets, higher-order correlators are
just some examples among those considered in the literature)
are by construction suboptimal estimators of the primordial
component. However, in principle they are expected to
produce a totally different response to NG contaminants
than the primordial bispectrum. A cross-detection of fNL

with many different statistics would then be much less likely
due to some unknown spurious effect. Another way to test
the primordial origin of an observed NG signal, recently
proposed by Munshi and Heavens in [93], is to modify the
optimal bispectrum estimator in order to evaluate a function
of 	 rather than a single amplitude fNL. The point is that, if a
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clear detection of fNL is achieved at several σ , then the signal
is large enough to allow a less radical data compression.
Munshi and Heavens [93] have then recently proposed to
estimate the “bispectrum-related power spectrum” Cskew

	

defined as

Cskew
	3

= 1
2(	3 + 1)

∑
	1	2

B
fNL=1
	1	2	3

Bobs
	1	2	3

C	1C	2C	3

. (136)

Like in the usual fNL estimator, the optimal S/N weighting
is included, and the observed bispectrum from the map is
correlated to the theoretical shape. However in this case
we do not measure the overall amplitude, but rather the
amplitude for each 	-bin. Note that

f̂NL ≡ 1
N

∑
	

Cskew
	 . (137)

By construction of Cskew
	 , the usual fNL estimator is then

retrieved by summing the bispectrum-related power spec-
trum over all 	. The general idea is now that the functional
dependence of this skew power spectrum on 	 will show sig-
nificant variation between different sources of NG, allowing
a clearer test of the hypothesis that the origin of the observed
signal is primordial. A number of investigations of WMAP
data have already been performed using this statistic in order
to look for primordial and secondary signals [94, 95], and
related pseudo-Cl statistics have been developed by Munshi
et al. in [96].

In any case, as long as bispectrum estimators are
considered, independently of the specific statistic or imple-
mentation, the best way to deal with NG contaminants is to
make sure to list all of them and study their bispectra, or at
least find ways to assess their potential impact on the final
results. In the following paragraphs we will then turn our
attention to a classification of the most important potential
sources of spurious NG and see how they are treated in
the primordial bispectrum analysis. Finally, we will consider
some effects that interact with the fNL measurement not
necessarily by directly producing a secondary bispectrum,
but rather by changing the normalization of the estimator
or by increasing the error bars without producing any bias.

3.9.1. Diffuse Foreground Emission. There are three main
astrophysical effects producing a galactic microwave emis-
sion from our galaxy in the typical frequency range of a CMB
experiment [54, 91]: free-free emission from electron-ion
scattering, synchrotron emission from acceleration of cosmic
ray electrons in magnetic fields, and thermal dust emission.

Since these sources produce signals with a peculiar spec-
tral and spatial distribution, multifrequency observations
allow the separation of them from the primordial compo-
nent of the CMB signal by suitable component separation
algorithms. In the resulting “cleaned” map the foreground
contribution to a	m is minimized, although obviously it can
never be completely eliminated. The remaining foreground
contamination after cleaning is called the foreground residual.
Note that the emission from the galactic plane of the CMB
map is so strong that a clean separation of the primordial

CMB component from the foregrounds is impossible. The
galactic regions that are too contaminated to produce a clean
component separation have to be masked out in the analysis.
The size of the galactic mask will depend on the choice of the
foreground flux level above which the pixel is considered too
contaminated to be included in the analysis. The choice of the
cutoff will depend on the specific analysis that one wants to
perform on the data. Since the primordial NG signal is much
smaller than the Gaussian component, more conservative
masks (i.e., larger) need generally to be used for fNL estimates
than those applied to C	 estimation. Direct information
about the spatial distribution of foreground emission in the
sky (i.e., free-free, synchrotron, or dust) is provided in the
form of templates, obtained either from the most foreground
contaminated channels of the CMB experiment itself, or
from external astrophysical surveys (e.g., observations of
radioemission, maps of Hα emission). Templates are affected
by several sources of uncertainties and errors (see, e.g., [91]),
and using them in assessing the possible impact on fNL of
foreground emission or residuals has both advantages and
disadvantages. The safest approach is probably to combine
internal consistency tests on the data with analysis involving
the use of templates.

The first extensive tests of possible foreground contami-
nation in fNL measurements were performed by Yadav and
Wandelt in [79], where a detection of a primordial local
signal at above 99.5% level on WMAP 3-year data was
claimed. As explained earlier (see caption of Table 3), further
analysis on more recent datasets and/or using more optimal
estimators have led to an updated f loc

NL estimate that is about
2-σ away from the origin, that is, just a “hint” of a possible
local signal, rather than a detection. However, as long as a
detection was claimed by Yadav and Wandelt in [79], tests to
exclude a possible contamination from diffuse foregrounds
had to be carried out. In this case the authors relied mostly
on the “internal consistency test” approach. Their analysis
included the following.

(1) Expanding the original galactic mask in order to
see whether the estimated value of fNL is stable for
different choice of the mask. A significantly lower
value of fNL for a larger mask might mean that
some unmasked noise contribution is affecting the
measurement with the original mask.

(2) Comparing fNL estimates from foreground-reduced
maps to estimates from “raw” maps that include
a galactic mask, but have not gone through a
component separation process. If foregrounds have
a significant impact on fNL, then one expects the
measurements from raw and reduced maps to differ
significantly.

(3) Comparing different frequency channels. If fore-
grounds significantly contaminate measurements at
given frequencies, then different channels should
produce different results.

Analyses involving some kind of prior information about
foreground emission were carried on by both Yadav and
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Wandelt [79] and Smith et al. [68]. The two approaches
adopted in this case were the following.

(1) Producing simulations including both a Gaussian
primordial CMB signal and the foreground emission.
The latter has in this case to be generated according
to a model that allows for a good reconstruction of
the observed templates. The fNL estimator can then
be applied to these simulations in order to check
whether the measured fNL is consistent with 0 (as it
should be, in absence of significant foreground con-
tamination, since the primordial input is Gaussian).

(2) For an optimal estimator including full C−1 pre-
filtering [68], adding the foreground templates to
the noise covariance, by assigning infinite variance
to each template Ti

templ(n̂). In this way the estimate
is “blind” to the template amplitudes. This produces
a loss of information that in turn determines an
increase of the variance. The larger the contami-
nation from foreground is, the more the variance
increases. For negligible contamination, the variance
stays the same. In any case, the effect of foregrounds
is entirely included in the error bars, provided that
the assumed templates are accurate enough. This
method of analysis, called template marginalization,
is adopted by Smith et al. in [68]. A complete
mathematical derivation of this method is provided
by Rybicki and Press in [97].

In addition to the methods outlined above, there is also
the possibility of using the foreground templates for a
joint estimation of fNL and of the templates amplitudes
(see equation (130)). This approach has been recently used
by Cabella et al. in [98] for a needlet estimator. It could
be obviously reapplied in the same form to a bispectrum
estimator.

In conclusion, all of the tests above have been applied
to WMAP 3-year and 5-year data releases. No evidence for
the presence of a significant contamination of the local fNL

measurement from diffuse foreground was produced. Other
shapes of fNL were not considered since the only type of
non-Gaussianity that has produced a marginal detection
is so far the local one. Although diffuse foregrounds and
foreground residuals do not seem to contaminate primordial
NG measurements in WMAP, this is not guaranteed to hold
true for Planck, due to its much higher sensitivity.

3.9.2. Unresolved Point Sources. Extragalactic point sources
are the most important foreground at small angular scales
(see [99]). Sources are identified by searching the maps for
bright spots that fit the beam profile and then masked out.
However not all of the sources can be resolved and eliminated
in this way. Unresolved point sources contaminate the
map and are a source of a NG signal that can potentially
interfere with primordial NG measurements. Unclustered
extragalactic point sources have a Poisson distribution and
their bispectrum is then simply a constant:

b
ps
	1	2	3

= bps, (138)

with an amplitude that has to be estimated from the data
and depends on the level of contamination from unresolved
sources. We can now use (135) to estimate the correlation
between primordial shapes and the point source bispectrum.
For a given choice of the amplitude we can also estimate
the expected bias on the fNL estimator. Simulations of NG
maps including the bispectrum from point sources can also
be produced and the primordial fNL estimator for different
shapes applied to them in order to estimate the bias. Finally,
since b

ps
	1	2	3

is manifestly separable, an estimator of bps can
be built. All of these analyses were performed by Komatsu et
al. in [1, 78] on local and equilateral shapes to conclude that
point sources do not contaminate significantly the estimate

of f loc
NL . On the other hand, they have a larger impact on f

equil
NL :

their induced bias from MC simulations is Δ f
equil

NL = 22 ± 4,

to be compared to the statistical error bar Δ f
equil

NL ∼ 100.
Additional tests were performed by Smith et al. in [68] to
account for the possible presence of clustered unresolved
point sources. No significant contamination on f loc

NL was
found in this case. As for the diffuse foreground case, the
enhanced fNL sensitivity that Planck can achieve with respect
to WMAP might increase the impact of these effects.

3.9.3. Secondary Anisotropies. One big advantage of using
CMB anisotropies to test primordial NG is that they are
small and can then be treated in the linear regime. The
CMB temperature fluctuation field is thus linked to the
primordial potential through a linear convolution with
radiation transfer functions, as we saw earlier. At this level,
the Gaussianity of the primordial potential is conserved
in the CMB temperature fluctuation field. If, however, we
work at second-order in perturbation theory, the initial
conditions are propagated nonlinearly into the observed
CMB anisotropies, and the resulting CMB fluctuations
are mildly non-Gaussian even starting from a Gaussian
primordial curvature field. Second order effects are clearly
very small. However they may well be of the same order of
magnitude as primordial NG, since the NG component of
the primordial potential is O( fNL〈Φ2

L(x)〉). In conclusion,
secondary anisotropies are a potential source of CMB NG,
at a level that could in principle contaminate estimates of
primordial non-Gaussianity. To fully account for these effects,
it is necessary to obtain a relation analogous to equation
(31), but to second-order in perturbation theory. Radiation
transfer functions are obtained at first order by solving
the linearized system of Boltzmann-Einstein equations (see,
e.g., [54, 55]). The same equations will then have to be
expanded and numerically integrated at second order in this
case. Having obtained second order transfer functions, the
full angular bispectrum of secondary anisotropies can be
calculated and correlated to the primordial one in order
to check for the presence of contaminant effects. The
full system of second order Einstein-Boltzmann equations
has been derived in [100–103] and partially integrated
numerically in [104] including only the source terms that
can be written as product of first-order perturbations. These
terms have been shown to produce a totally negligible
NG contamination. Very recently, the study in [105] has
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integrated numerically the full Einstein-Boltzmann system of
equations at second order, including “genuine” second-order
terms, but neglecting late-time effects, that is, contribution to
the temperature anisotropies coming from the evolution of
the gravitational potentials due to the late-time acceleration
of the Universe or to reionization effects. According to this
calculation, second-order early-time effects (i.e., Sachs-Wolfe
and acoustic oscillations at second order) are able to bias
the estimator at level of f bias

NL ∼ 5 at the angular resolution
achieved by the Planck satellite (	max ∼ 2000), while a
negligible contamination is expected for WMAP. Although
a formal solution of the full system of equations has not
been obtained yet for the “late-time” source, many late-time
secondary effects are known and have been modeled for
some time. Among these there are, for example, weak lens-
ing, Sunyaev-Zeldovich (SZ) effect, Rees-Sciama (RS) effect,
and so on. Therefore, a natural approach that was adopted
in the literature consisted in studying the bispectra arising
from these well-known effects and from their correlations
taken one-by-one (e.g., ISW-lensing correlation, SZ-lensing
correlation, and so on). It goes beyond the purpose of this
review to discuss in detail these results and their implications.
Let us just mention them briefly. A fisher matrix analysis
in the study of Serra and Cooray in [106] showed that
the combination of bispectra arising from ISW-lensing, SZ-
lensing, and unresolved point sources produced a negligible
contamination at the angular resolution and sensitivity of
WMAP, but a significant one for an experiment with the
characteristics of Planck. It was in particular shown that
estimates of local NG would be biased, especially by ISW-
lensing correlation, with f bias

NL ∼ 10 for local NG. A similar
result on ISW-lensing was obtained in another Fisher matrix
analysis by Smith and Zaldarriaga [22], and a similar level
of contamination was found by Mangilli and Verde in [107]
by adding to the ISW-lensing signal also the analogous RS-
lensing bispectrum. A bispectrum estimator of local and
equilateral NG was applied to simulated lensed primordial
NG CMB maps by Hanson et al. [108], and three main
effects were studied: a possible bias induced by neglecting
the lensing of primordial bispectrum in the normalization
and weights of the estimator, an increase of the variance
due to lensing-produced higher-order correlators, and ISW-
lensing bias. The only significant effect turned out to be the
ISW-lensing bias on f loc

NL , at a level confirming the Fisher
matrix predictions. Note that this bias, being well known
and expected, can be simply calculated and subtracted from
future Planck estimates, as well as the early-time bias dis-
cussed above. The reason why the coupling between lensing
and ISW tends to bias the local estimate can be understood
physically: large-scale potential fluctuations source the ISW
effect and produce a lensing signal on small scales, generating
a NG signal on squeezed triangles. Although both the
primordial local bispectrum and the ISW-lensing bispectrum
are peaked on squeezed triangles, the presence of acoustic
oscillations in the primordial configurations reduces the
overall correlation between the two shapes, thus making the
final bias significant, but not too large. Another recently
studied effect is that of inhomogeneous recombination
caused by perturbation in the electron number density as in

the studies of Khatri and Wandelt in [109], and in Senatore et
al. [110]. Also in this case the contaminant shape is close to
local. Although smaller than the ISW-lensing induced bias,
also this effect seems to be able to affect the primordial
estimate at a level marginally detectable by Planck. In
order to conclude our brief survey of studies of secondary
bispectra, let us finally mention the work done by Babich and
Pierpaoli in [111], where point source density modulation
bispectra induced by lensing magnification and selection
effects, as well as SZ modulation from lensing magnification,
were studied. The conclusion was once again that these
effects are negligible for WMAP but close to the sensitivity
level of Planck for local NG. Despite the great attention
received so far in the literature, more has yet to be done
in the area of assessing NG contamination from secondary
sources. Note in particular that all of the predictions in this
section concern temperature anisotropies, and estimates on
secondary polarization bispectra are yet unavailable. It is
clear that a complete and accurate description of secondary
bispectra will be crucial for analysis of the future Planck
dataset. A summary of the contribution of the various effects
described in this paragraph, as well as of the other sources
of contamination considered in this section, is presented in
Table 4 and relative caption.

3.9.4. Non-Gaussian Noise. Systematics are another potential
cause of contamination beyond astrophysical and cosmo-
logical sources. The noise in the experiment is generally
well described as Gaussian. However possible non-Gaussian
properties have to be tested in our context. This was done
by Yadav and Wandelt in [79] by taking differences of
yearly WMAP data in order to create jackknife realizations
of WMAP noise maps for different detectors, including
instrument systematics. The estimator can then be applied
to these realizations in order to check that a negligible fNL is
measured. This was the result obtained on the WMAP 3-year
dataset.

3.9.5. Other Effects. In this section we quickly summarize
other effects that could interfere with estimates of primordial
non-Gaussianity, but did not fit the classification above
in the sense that they do not correspond to NG effects
contaminating the CMB sky or the instrument noise.

One of these effects is 1/ f noise, expected to affect
especially the low-frequency channels of Planck. The 1/ f
noise component is generally removed from the map using
“destriping” algorithms (see, e.g., [114, 115]). The unsub-
tracted “destriping residuals” form a Gaussian-correlated
random field in pixel space. Their nontrivial covariance
matrix should in principle be included in the inverse covari-
ance prefiltering of the optimal estimator. If not included
in the prefiltering, this effect could in principle enhance
the estimator error bars (although it cannot generate any
bias, since it is Gaussian). Unfortunately, a full numerical
evaluation of this covariance matrix is quite challenging.
Donzelli et al. [113] applied the estimator in its pseudoop-
timal implementation to maps of Gaussian CMB signal +
noise, accounting only for anisotropic noise in the linear
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Table 4: Expected contamination on fNL measurements from secondary bispectra (see Section 3.9.3) and from the effects described in
Section 3.9.5. The expected bias of the primordial fNL estimate is given for local and equilateral shapes (if not reported, that means that
the corresponding shape has not been studied). All of the estimates above are for an experiment with the angular resolution of the Planck
satellite (i.e., 	max ∼ 2000). All of the effects above have been proved to be negligible, when compared to primordial fNL-error bars, in the
WMAP case. The expected biases have to be compared to the primordial error bars estimated from Fisher matrix forecasts for a Planck-like

experiment. These are, as reported in the table, ΔlocalfNL

 5 and Δ

equil
fNL


 60. Some effects, namely, ISW-lensing bispectra and the three-point
function from inhomogenous recombination, have been studied by different authors. In these cases all of the results obtained in different
works are reported. While a good agreement is found for ISW-lensing estimates, some discrepancy between different studies is present for
inhomogenous recombination calculations. Note how asymmetric beams and residuals of destriping change the correlation properties of the
CMB temperature field, but leave it Gaussian. For this reason they can in principle affect the final error bars, but they cannot produce any
bias. In addition to the effects summarized in this table, another potential source of contamination comes from foreground residuals (see
Section 3.9.1). This has been shown to be negligible for WMAP, while its impact for Planck has not been discussed yet in the literature and
will be assessed in the forthcoming Planck data release. The effect of point sources on WMAP fNL estimates has been studied in [1], where
it was found that bias from unresolved point sources generates an additional contribution to the error bars of order 5 and 22 for local and

equilateral shapes, respectively (to be compared to WMAP primordial fNL-error bars ΔlocalfNL

 20 and Δ

equilateral
fNL


 100). Note finally how the
contribution from the propagation of cosmological parameter errors on the fNL estimate is dependent on the measured value of fNL (like for
point sources, the effect of cosmological parameters error propagation is to bias the estimator; however the sign and exact magnitude of this
bias cannot be computed; that produces an additional uncertainty and correspondingly an additional contribution to the error bars.).

Local (Δ fNL 
 5) Equil. (Δ fNL 
 60)

ISW-lensing Serra and Cooray [106] fbias 
 10
fbias 
 −3Hanson et al. [108] fbias 
 10

ISW+RS-Lensing Mangilli and Verde [107] fbias 
 10

Unres. Point Sources (PS) Serra and Cooray [106] fbias 
 1

SZ number density modulation Babich and Pierpaoli [111] fbias 
 −1.0 fbias 
 0

PS density modulation Babich and Pierpaoli [111] fbias 
 −0.4 fbias 
 0

PS lensing magnification Babich and Pierpaoli [111] fbias 
 0.3 fbias 
 0

SZ lensing magnification Babich and Pierpaoli [111] fbias 
 0.02 fbias 
 0

Inhomogenous recombination Khatri and Wandelt [109] fbias 
 −0.1 fbias 
 0

Senatore et al. [110] fbias 
 −3.5 fbias 
 0

Boltmann-Einstein (BE) “1st × 1st” Nitta et al. [104] fbias 
 0.5

BE “Early times” Pitrou et al. [105] fbias 
5 fbias 
 5

Cosm. parameters uncert. Liguori and Riotto [112] | fbias| 
 0.05 f local
NL | fbias| 
 0.05 f

equil
NL

Asymmetric beams Donzelli et al. [113] Δ fNL 
 0 Δ fNL 
 0

Residuals of Destriping Donzelli et al. [113] Δ fNL 
 0 Δ fNL 
 0

term, but including destriping residuals in the noise model
adopted for the simulations. The final result shows that the
error bars do not increase when 1/ f noise effects are included
in the simulations, even though they are neglected in the
covariance matrix appearing in the estimator.

Another effect to take into account for Planck is that of an
asymmetric beam. The beam in the estimator normalization
term is approximated as a circular beam. However Planck
optical simulations (see, e.g., [116]) show that in reality we
have to deal with elliptic beams, characterized by a nontrivial
azimuthal dependence. If the circular beam approximation
in the normalization of the estimate is not accurate enough,
a bias could be introduced. Moreover the anisotropy of the
beam could cause an increase of the variance if neglected
in the inverse covariance prefiltering. Again, these effects
were found to be negligible in tests on realistic simulations
performed by Donzelli et al. [113].

Finally, the estimate of fNL is done assuming a given
cosmological model, that is, by fixing all of the other cos-
mological parameters to their best-fit value obtained from a
likelihood analysis of the angular power spectrum. Since they

are themselves the product of a statistical estimation process,
these values obviously present uncertainties that should be
propagated into the final fNL-error bars. (In particular, since
we are not doing a joint-likelihood estimation of all of
the parameters and marginalizing to get fNL (that would
be the optimal but time consuming approach), the effect
of uncertainties in the parameters propagate onto the fNL

measure as a bias. This bias has to be evaluated and quoted
in addition to the usual statistical fNL-error bar.). This
calculation was done by Liguori and Riotto in [112], where it
was found that the propagated error is fNL dependent and it
can become important only if a large fNL will be detected in
the data at some point.

3.10. Generation of Simulated Non-Gaussian CMB Maps. In
this section we will describe algorithms for the generation
of non-Gaussian CMB maps with a given bispectrum. There
are three main reasons why primordial NG simulations of
the CMB are useful in the context of bispectrum estimation
of fNL as follows.
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Figure 12: (a), (b) A Gaussian realization of the CMB sky (a) and a non-Gaussian local CMB map (b), obtained by adding to the Gaussian
one a NG component with f loc

NL = 3000, from the study by Liguori et al. in [117]. (b) and (d) A Gaussian CMB map (c) and a non-
Gaussian DBI map (d) with f DBI

NL = 4000, from [9]. The maps in the upper panel have been obtained using the local algorithm described in
Section 3.10.1. The maps in (b) have been produced with the bispectrum algorithm of Section 3.10.2, after having separated the primordial
DBI shape using the eigenmode expansion defined in (26).

(1) To test the unbiasedness of the fNL bispectrum
estimator (by checking that the Monte Carlo average
of the recovered fNL reproduces the fNL set in input).

(2) To study how the expected primordial NG signal
imprinted in the CMB is modified by the presence
of other effects, like those considered in Section 3.1.
For example, weak lensing of primordial NG might in
principle change the observed bispectrum and affect
the estimates. This can be studied again by testing the
estimator on NG-lensed simulations, as it was done
by Hanson et al. in [108].

(3) For local NG, to obtain the error bars of the fNL

estimator if a large fNL is detected at several σ (see
Section 3.5.4). We have previously seen that for a
several-sigma detection of local NG the bispectrum
variance is fNL dependent. The Monte Carlo average
(116) thus has to be evaluated on NG simulations
with the measured fNL in input.

Unless we are in the situation described at point (3) of the list
above, all we need to produce is then maps with given power
spectrum and bispectrum, since higher-order correlators
can be neglected. In the large local fNL case higher-order
correlators are instead important and have to be included.
Fortunately the local case is the only one for which we have
a full expression of the primordial potential Φ(x) that allows
us to produce exact simulations.

We will divide this section into two parts. In the first we
will describe exact simulation algorithms of local NG, while
in the second we will describe methods to generate maps
with given power spectrum and bispectrum, starting from
an arbitrary primordial shape.

3.10.1. Algorithms for Local Non-Gaussianity. First of all, let
us recall that the CMB multipoles a	m are related to the
primordial gravitational potentialΦ through the well-known
formula

a	m =
∫

d3k

(2π)3Φ(k)Y	m
(
k̂
)
Δ	(k), (139)

where Δ	(k) are the radiation transfer functions and the
potential is written in Fourier space. We already met
this formula when we calculated the relation between the
primordial and CMB bispectrums in Section 3.1. We also
recall that the local non-Gaussian primordial potential takes
a very simple expression in real space, where

Φ(x) = ΦL(x) + fNL
[
Φ2
L(x)− 〈Φ2

L(x)
〉]
. (140)

In the previous expression ΦL is a Gaussian random field,
characterized by a primordial power spectrum PΦ(k) =
Akn−4; in the following we will refer to ΦL(x) as the
Gaussian part of the primordial potential. The remaining
non-Gaussian part of the potential is simply the square of
the Gaussian part point-by-point (modulo a constant term,
necessary to enforce the condition 〈Φ(x)〉 = 0; however it
is clear that this term only affects the CMB monopole). It
is then convenient to work directly in real space and recast
formula (139) in the following form:

a	m =
∫
d3rΦ(r)Y	m(r̂)α	(r), (141)

where α	(r) ≡
∫
dkk2 j	(kr)Δ	(k), also used in (32), is the

real-space counterpart of the radiation transfer functions
Δ	(k), j	(kr) is a spherical Bessel function, and r is a look-
back conformal distance. This formula suggests to structure
an algorithm for the generation of local CMB NG maps in
the following steps.

(1) Generate the Gaussian part ΦL of the potential in a
box whose side is the present cosmic horizon.

(2) Square the Gaussian part point-by-point to get the
non-Gaussian part.

(3) Expand in spherical harmonics the Gaussian and
non-Gaussian parts of the potential for different
values of the radial coordinate r in the simulation
box.

(4) Convolve the spherical harmonic expansions of ΦL

andΦNL with the radiation transfer function Δ	(r) in
order to obtain the Gaussian and non-Gaussian parts
of the multipoles of the final NG CMB simulation.
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For a given choice of the non-Gaussian parameter
fNL, a CMB map is then obtained simply through
the linear combination a	m = aL	m + fNLa

NL
	m (the

superscripts L and NL are always indicating Gaussian
and non-Gaussian, resp.).

The most difficult and time-consuming part in this
process is actually the generation of the Gaussian part of
the potential Φ. One possibility is to generate the Gaussian
part of the potential in a cubic box in Fourier space, where
different modes are uncorrelated and have variance given
by the primordial power spectrum PΦ(k), then apply a Fast
Fourier Transform (FFT) algorithm to go to real space.
Cartesian coordinates are then transformed into spherical
coordinates by means of an interpolation algorithm in order
to transform ΦL(x) into ΦL(r, n̂). Finally, the Gaussian
potential in spherical coordinates is squared point-by-point
to get the NG part, and the spherical harmonic expansion
and radiation transfer function convolution at point 4 of the
list above are performed in order to obtain the multipoles
of the final CMB map. The aforementioned algorithm was
implemented by Komatsu et al. in [78] to generate NG local
CMB maps at the resolution of the Planck satellite.

The difficulty with this approach arises from the fact that
we are working in a box of the size of the present cosmic
horizon (about 15 Gpc in conformal time), but at the same
time a cell in this box must have a side no bigger than 20 Mpc
in order to resolve the last scattering surface, where most of
the CMB signal is generated. A more convenient and accurate
way to produce the local NG a	m was found in [117, 118]:
the idea is to work directly in spherical coordinates, use
a nonuniform discretization of the simulation box (since
no sample points are needed in a large region of the box
where photons are just free streaming, while many sample
points are needed at last scattering, as we just pointed out
above), and generate the multipoles of the expansion of
ΦL(x) through the following two-step approach.

(1) Generate uncorrelated radial multipoles n	m(r),
Gaussianly distributed and characterized by the fol-
lowing spectrum:

〈
n	1m1 (r1)n∗	2m2

(r2)
〉
= δD(r1 − r2)

r2
δ	2
	1
δm2
m1

, (142)

where δD is the Dirac delta function.

(2) Filter the multipoles n	m with suitable functions
in order to produce a Gaussian random field with
the properties of the multipole expansion of the
primordial Gaussian potential ΦL. It can be shown
that the expression of the filter functions is

W	(r, r1) = 2
π

∫
dkk2

√
PΦ(k) j	(kr) j	(kr1), (143)

where PΦ is the primordial curvature power spec-
trum, and the filtering operation takes the form

ΦL
	m(r) =

∫
dr1r

2
1n	m(r1)W	(r, r1). (144)
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Figure 13: Probability density function of temperature pixel from
local primordial non-Gaussian CMB maps, obtained with the
“exact” simulation algorithm described in Section 3.10.1. Different
panels show the result for different values of f loc

NL , in order to give an
idea of the order of magnitude of the signal that one wants to detect.
For fNL < 1000 the non-Gaussianity is too small to be seen in these
plots. Note that WMAP constrains f loc

NL to be � 100.

In the last expression ΦL
	m(r) are the desired quan-

tities, that is, the multipoles of the expansion of the
Gaussian part of the primordial potential for a given
r.

This algorithm, recently improved by Elsner and Wandelt
in [119], was used to produce NG local maps at the resolu-
tion of WMAP and Planck in temperature and polarization.
An example of its results is shown in Figure 12(a). Figure 13
shows 1-point PDFs of temperature anisotropies for different
values of f loc

NL , extracted from these simulations.

3.10.2. Algorithms for Arbitrary Bispectra. In the limit of weak
non-Gaussianity, an algorithm to produce non-Gaussian
CMB simulations with a given power spectrum and bispec-
trum for separable primordial shapes was described by Smith
and Zaldarriaga in [22]. In this algorithm the non-Gaussian
components of the CMB multipoles are obtained using the
following formula:

aNG
	m = 1

6

∑
	imi

B	1	2	3

(
	 	2 	3

m m2 m3

)
aG∗	2m2

C	2

aG∗	3m3

C	3

, (145)

where aG	m is the Gaussian part of the CMB multipoles,
generated using the angular power spectrum C	 , while B	1	2	3

is the given bispectrum of the theoretical model for which
simulations are required. Note that alternative algorithms
to generate CMB maps with given bispectrum have been
proposed in the literature [120, 121], but they are less
general than the one introduced by (145). Although (145)
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is completely general, as before its numerical evaluation is
only computationally affordable for bispectra that can be
written in separable form. We have emphasized already that
separability results in a reduction of the computational cost
of the estimator (99) from O(	5

max) to O(	3
max) operations;

the same argument applies here and allows to rewrite (145)
into an equivalent form in pixel space. Starting from formula
(46), and substituting it in (145), we find that

aNG
	m =

∫
drr2

∫
dΩn̂(2X	(r)MY (r, n̂)MZ(r, n̂)

+ 2Y	(r)MX(r, n̂)MZ(r, n̂)

+2Z	(r)MX(r, n̂)MY (r, n̂)).

(146)

As already discussed in the fNL-estimator section, the
limitation dictated by separability is clearly overcome by
using the eigenfunction representations for the bispectrums
(26) and (60) introduced by Fergusson et al. in [14]. As
usual, the basic idea is to start by expanding an arbitrary
bispectrum shape S (either primordial or in the CMB) using
a separable polynomial decomposition until a good level of
convergence is achieved and then to substitute the mode
decomposition into (145) to get a linear combination of
numerically tractable terms written in the form of (146).
Using the separable mode coefficients αprs for the reduced
bispectrum (56) and the filtered map expressions Mp(r, n̂)
(109) as the starting point, we find that the expression (146)
generalises to

aNG
lm

= 1
18

∑
prs

αprs

∫
dxx2qlp(x)

∫
dΩn̂Y

m∗
l (n̂)MG

r (r, n̂)MG
s (r, n̂),

(147)

where the MG
p (r, n̂) are found by summing using a set of

Gaussian aG	m’s convolved with the qlp’s (refer to (107)):

MG
p (n̂, x) =

∑
lm

q l
p

aGlmYlm
Cl

. (148)

Here, the accuracy of convergence with αprs is parametrized
in terms of the correlation C(S, SN ) between the original
nonseparable shape and the eigenmode expansion, as defined
previously (19). Note that this convergence can also be
checked more accurately using the full Fisher matrix corre-
lation on the CMB bispectra C(b	1	2	3 , bN	1	2	3

), described in
Sections 3.8 and 3.9.

In addition to the bispectrum separability requirement,
there is an important further caveat which can prevent the
straightforward implementation of the algorithm (145). By
construction, terms O( f 2

NL) and higher are not explicitly

controlled. Following the discussion in [108], we can write
the connected N-point functions as

〈
a∗	1m1

a	2m2

〉
=
[
C	1 + f 2

NLC
NG
	1

]
, (149)

〈
a	1m1a	2m2a	3m3

〉 = [
fNLB	1	2	3 + O

(
f 3
NL

)]
, (150)

〈
a	1m1a	2m2a	3m3 . . . a	NmN

〉 = O
(
f 3
NL

)
. (151)

Thus the condition that the map has the power spectrum
Cl specified in input will only be satisfied if the power
spectrum of the non-Gaussian component in (149) remains
small. Since this method does not control O( f 2

NL) terms, one
has to ascertain that spuriously large CNG

l contributions do
not affect the overall power spectrum significantly. It turns
out that this effect plagues current map simulations if the
standard separable expressions for the local and equilateral
bispectra are directly substituted into (145). However a slight
modification of (145), described by Hanson et al. in [108]
and Fergusson et al. in [14], allows us to overcome this prob-
lem at no computational cost. Moreover, it was shown by
Fergusson et al. [14] that maps obtained from the eigenmode
expansions (26) and (60) are stable independently of the
shape under study, thus making this map-making generating
algorithm robust and fully general. Examples of DBI NG
maps produced by combining the eigenmode expansion
method with the map-making algorithm described in this
section are shown in Figure 12(b).

4. Large-Scale Structure

In the standard scenario, early perturbations produced
during inflation are responsible for the common origin
of the CMB temperature fluctuations and the large-scale
matter and galaxy distributions in the Universe, that is, the
large-scale structure. The Cosmic Microwave Background
provides a remarkable example of a Gaussian random field
in nature. Information on cosmological parameters is in fact
derived from measurements of its power spectrum, the Cl’s,
while bispectrum measurements from WMAP data remain
consistent with zero. The distribution of matter, as we can
infer today from shear or galaxy observations, unlike the
CMB, can be described as a highly non-Gaussian random
field, even for Gaussian initial conditions.

The matter overdensity δ(x) is defined in terms of the
matter density ρ(x) and its mean value ρ by

δ(x) ≡ ρ(x)− ρ
ρ

, (152)

with zero mean by construction. Such quantity assumes, at
late times, the limiting value δ = −1 in voids, accounting
for a large fraction of the volume of the Universe, while it
achieves values δ � 1 in collapsed objects such as dark-
matter halos. Its probability distribution function is therefore
expected, at low redshift, to depart strongly from a Gaussian
distribution centred at δ = 0, even though it could be
well approximated by it at decoupling, when perturbations
around δ = 0 were of the order of δ ∼ 10−5. Such
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non-Gaussianity is the result of the nonlinear evolution of
structures subject to gravitational instability.

In addition, nonlinearities in the bias relation between
the galaxy and matter distributions constitute a second source
of non-Gaussianity in the large-scale structure mapped out
by redshift surveys. Non-Gaussian initial conditions would
therefore provide a third component in the non-Gaussianity
of the galaxy distribution. The question regarding the
detection of effects due to primordial non-Gaussianity, is
therefore strictly related to our ability to distinguish between
these different contributions and, ultimately, it will depend
on the robustness of our theoretical predictions in the
linear and mildly nonlinear regimes. From this respect,
cosmological Perturbation Theory (PT), and its more recent
developments, is very important for providing the tools
to study the evolution of non-Gaussianities and how to
differentiate their origin.

Considering only the matter distribution, the leading-
order prediction in standard PT for the matter bispectrum at
large scales is given by the sum of a primordial component
and a component due to gravitational instability, which
is present also for Gaussian initial conditions. Until fairly
recently it was assumed that this picture could be easily
extended to the galaxy distribution, with the galaxy bispec-
trum receiving an additional contribution due to nonlinear
bias. Following the historical development of the subject,
in Section 4.1 we will discuss early work on higher-order
moments of the matter and galaxy distribution, starting with
the skewness. We will then consider in Section 4.2 the matter
bispectrum and its description in the Eulerian perturbation
theory, with specific attention given to effects at large scales
due to a primordial component, as well as at small-scale,
nonlinear corrections in presence of non-Gaussian initial
conditions. Here, most of the theoretical results on higher-
order correlation functions are developed. In Section 4.3, we
will deal with the galaxy bispectrum. We will first introduce
the simple model based on local bias and discuss problems
related to bispectrum measurements in redshift surveys with
specific attention given to the detection of primordial non-
Gaussianity. We will see how early results indicated that the
galaxy bispectrum could be used as a tool to constrain non-
Gaussian initial conditions which is, in principle, competitive
with the CMB, illustrating this with actual results from
current datasets. We will then consider the outcome of recent
N-body simulations with non-Gaussian initial conditions
showing that the simple prediction for the galaxy bispectrum
assumed in most of the previous literature on the subject
fails to describe not only the measured halo bispectrum, but
even the halo power spectrum, even at large scales! We now
know that correlators of biased populations such as galaxies
and dark-matter halos receive large corrections, at large
scales, from local primordial non-Gaussianity. These results
opened up new and promising opportunities for detection
in future large-scale structure observations. Although, in our
view, a proper understanding of these effects remains to
be adequately developed at the time of writing, particularly
with respect to higher-order galaxy correlation functions,
we will describe the different descriptions proposed so
far in the literature and the prospects for detection of

primordial non-Gaussianity in measurements of the galaxy
bispectrum.

From a historical perspective, non-Gaussian initial con-
ditions have been studied for quite a long time. For instance,
early works on the clustering of density peaks and rare
objects can be found in the study of Grinstein and Wise in
[122], Lucchin and Matarrese in [123], Matarrese et al. in
[124], while early N-body simulations with non-Gaussian
initial conditions go back to the early eighties [125–129]. In
the early days, a large variety of non-Gaussian models, often
defined in terms of a nonlinear transformation of a Gaussian
field, were considered. In some cases, large non-Gaussian
components were studied because, on one hand, they could
be used to falsify some models and, on the other, as a way to
reconcile contradictory observational results with theoretical
frameworks. In this review, however, we will consider only
models predicting small departures from Gaussian initial
conditions which are consistent with CMB observations.

While we focus in this review on direct bispectrum
measurements, it should be stressed that the effects of
primordial non-Gaussianity on large-scale structure are
not limited to corrections to its higher-order correlation
functions. Aside from the recent results on the galaxy power
spectrum mentioned above, significant departures from
Gaussian initial conditions are expected to have important
effects on the halo mass function and therefore on the
observed cluster number density. See Section 2.1 in the
study of Sefusatti et al. in [130] for a brief overview of
previous work and the studies of Afshordi and Tolley in
[131], Dalal et al. in [132], Desjacques et al. in [133],
Fedeli et al. in [134], Grossi et al. in [135], Lam and Sheth
in [136], Lo Verde et al. in [137], Maggiore and Riotto
in [138], Oguri in [139], Pillepich et al. in [140], and
Valageas in [141], for recent theoretical and N-body results.
In addition, the corresponding effect on the abundance of
voids has been studied by Kamionkowski et al. [142], while
the possibility of constraining primordial non-Gaussianity
from measurements of Minkowski Functionals in large-scale
structure has been explored by Hikage et al. [143, 144].
Further effects on the intergalactic medium and reionization
[145, 146] or on future 21 cm observations [147, 148] have
also been investigated. We refer the reader to other papers in
this issue for a more complete discussion of these alternative
approaches.

Finally, we should warn the reader that this section will
not discuss analytical tools for the estimation of the non-
Gaussian parameters corresponding or comparable to those
described in the previous section for the CMB bispectrum,
with the simple reason been that such tools have not being
developed yet! In the first place, the physics of the CMB is
simpler in the sense that the bispectrum of the temperature
fluctuations at large scales is expected to provide the direct
measurement of the initial bispectrum of the curvature
perturbations, while the large-scale galaxy distribution is
characterized, as mentioned above, by additional sources
of non-Gaussianity for which we do not even have, at the
moment, a proper model. In the second place, the optimal
estimator for the fNL parameter presented in Section 3.5 has
been developed over several years to tackle the data provided
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by the WMAP satellite, which represented, so far, the best test
of the Gaussianity of the initial conditions. The analysis of
the galaxy bispectrum, on the other hand, did not have such
timely and compelling motivations as it was understood,
up until a couple of years ago, that large-scale structure
observations will be able to provide results comparable to the
CMB only in future, large-volume redshift surveys. We hope,
nevertheless, that this review might provide a starting point
for the development of a proper fNL estimator from large-
scale structure bispectrum measurements, possibly taking
advantage of the techniques already introduced in the context
of CMB observations.

4.1. The Skewness. This section serves as a brief historical
overview. Since the first large-scale observations did not
allow an accurate determination of individual bispectrum or
trispectrum configurations, most of the attention in the early
literature focused on the moments of the galaxy distribution,
and, in the first place, on the third- and fourth-order
moments, that is, the skewness and kurtosis, respectively. The
“normalized” moment of order p can be defined in terms of
the smoothed density field δR(x) as

sp,R ≡
〈
δ
p
R(x)

〉
c〈

δ2
R(x)

〉p/2 , (153)

where the subscript “c” indicates the connected correlations.
For Gaussian initial conditions, a perturbative treatment of
the equations of gravitational instability predicts at leading
order [149]

s3,R = 34
7
σR, (154)

with σ2
R = 〈δ2

R〉, computed in linear theory. Notice that we
are neglecting here, for simplicity, additional and relevant
contributions due to the smoothing of the density field
(see [150, 151]). When non-Gaussian initial conditions are
present, one expects an extra contribution to the skewness,
typically with a different relation with σR, whose value
depends on the non-Gaussian model. Comparisons between
the second- and third-order moments, S3,R and σR, (as well
as higher-order moments such as the kurtosis) measured
in redshift surveys have been early recognized as a tool to
test the Gaussianity of primordial perturbations [125, 152–
158]. These works recognized as well the importance of
reliable predictions in the nonlinear regime and of a proper
modeling of the effects of galaxy bias. In this respect, Fry and
Scherrer [154] proposed a more quantitative prediction for
the contribution to the galaxy skewness due to galaxy bias-
based perturbation theory and on the local bias expansion of
Fry and Gaztañaga [159]. They derived, for the skewness of
the galaxy distribution, an expression of the form

s3,R = s(0)
3,R +

34
7
σR +

6b2

b1
σR, (155)

where we assumed non-Gaussian initial conditions described
by a non-vanishing initial skewness s(0)

3,R (but vanishing
higher-order moments) and where b1 and b2 represent
constant bias parameters typical of the galaxy population
(which we will discuss explicitly in Section 4.3). This rela-
tively simple expression describes the skewness measured in
galaxy surveys, as the sum of three components corresponding
to three sources of non-Gaussianity for the galaxy distribution:
one primordial, one due to gravitational instability, and the
last due to nonlinear bias. Further studies in perturbation
theory can be found in [160, 161] while an alternative
derivation of the smoothed moments of the density field
based on the spherical collapse model has been studied
in [162]. The skewness predicted by texture models has
been studied in simulations as a function of the smoothing
scale R by Gaztanaga and Mähönen [163] and compared to
measurements of the same quantities in the APM Galaxy
Survey as in the study by Gaztañaga [164]; see Figure 14.
The differences between the s3,R in the non-Gaussian texture
model with respect to the Gaussian case provide a qualitative
example of the typical effects that we expect for non-
Gaussian initial conditions as a function of the smoothing
scale R and redshift. On the other hand, it should be kept
in mind that early works focused on models of primordial
non-Gaussianity characterized by a scaling of higher-order
correlation functions quite different from the one induced
by the fNL parametrization.

The measured skewness, as higher-order moments, cor-
responds to a single number. Despite the possibility to study
its peculiar dependence on the smoothing scale R, it is
nevertheless difficult to separate the different components,
particularly with respect to bias effects. However, this
possibility is offered in principle by direct measurements
of the galaxy bispectrum, relying on its dependence on the
shape of triangular configurations. In the next sections we
will discuss in details first the bispectrum of the matter
distribution then the bispectrum of the galaxy distribution,
a direct observable in redshift surveys.

4.2. The Matter Bispectrum. In this review we will focus on
the predictions for correlation functions in the Fourier space
from the Eulerian Perturbation Theory (PT). This approach
solves perturbatively the equations for the matter density and
velocity field evolution governed by gravitational instability.
These are the continuity equation, the Euler equation, and
the Poisson equation relating the matter density and the
gravitational potential. In the PT framework, the relation
between the results and the initial conditions, given in terms
of the initial correlators of the density field, is particu-
larly transparent. Moreover, recent works have significantly
extended, as we will discuss later, the predicting power of this
specific tool. Different approaches are also available: see, for
instance, the study by Scoccimarro in [165] for a comparison
between bispectrum measurements in N-body simulations
and predictions in the Lagrangian Perturbation Theory. We
refer the reader to the study by Bernardeau et al. in [70] for
a comprehensive review of cosmological perturbation theory
of the large-scale structure.
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Figure 14: (a) Measurements of the skewness of the matter distribution in N-body simulations as a function of the smoothing scale R for
the non-Gaussian texture model (filled symbols) and for Gaussian initial conditions (open circles). The time evolution is parametrized by the
value of σ8, with the non-Gaussian results shown at σ8 = 0.4 (triangles) and σ8 = 1 (squares). Lines show different theoretical predictions.
(b) Measurements of the third-, fourth- and fifth-order moments of the galaxy distribution in the APM Galaxy Survey, compared with the
simulation results with non-Gaussian initial conditions with different bias assumptions, from the study by Gaztanaga and Mähönen in [163]
(see the reference for further details).

4.2.1. Leading-Order Results in Perturbation Theory. As men-
tioned before, we consider specifically models where non-
Gaussian initial conditions are completely given in terms
of the correlators of the curvature perturbations at early
times, and the mechanism responsible for the extra non-
Gaussian properties of the density field is not active during
the subsequent evolution of matter perturbations, governed
only by gravitational instability. In PT, the solution for the
evolved matter density contrast is expressed as a series of
corrections to the linear solution δ(1) [166]:

δk = δ(1)
k + δ(2)

k + δ(3)
k + · · · , (156)

where each term can be written formally as (From now
on, we will adopt a different convention for the Fourier
transform with respect to the one used for the formulae in
previous section. The present convention is more common in
the large-scale structure literature and conforms with the one
adopted in the classical paper by Bernardeau et al. in [70]. )

δ(n)
k ≡

∫
d3q1 · · ·d3qnFn

(
q1, . . . , qn

)
δ(1)

q1
· · · δ(1)

qn , (157)

with Fn(q1, . . . , qn) representing the symmetrized n-order
kernel in PT. The initial conditions in the Gaussian case are
completely specified by the linear power spectrum P0(k),

with 〈δ(1)
k1
δ(1)

k2
〉 = δD(k12)P0(k1), where we adopt the notation

ki j ≡ ki + k j . Non-Gaussian initial conditions are described,
in the first place, by a nonzero expression for the three-point

function of the linear solution, that is, 〈δ(1)
k1
δ(1)

k2
δ(1)

k3
〉. In turn,

the initial matter correlators, that is, the correlators of the
linear solution δ(1), are given in terms of the correlators of
the curvature perturbations as

〈
δk1 · · · δkn

〉 =M(k1, z) · · ·M(kn, z)〈Φk1 · · ·Φkn〉, (158)

where we introduce the function

M(k, z) = 2
3
k2T(k)D(z)
ΩmH

2
0

, (159)

with T(k) being the matter transfer function and D(z) the
growth factor, expressing Poisson’s equation in the Fourier
space as

δk(z) =M(k, z)Φk. (160)

Notice that we denote with Φ the primordial curvature per-
turbations, that is, evaluated during the matter-dominated
era, not their value linearly extrapolated at present time.
(This choice, not unique in the literature, is particularly
convenient since curvature perturbations are constant dur-
ing matter domination. Also, it conforms to the definition
of fNL in terms of Φ assumed in the CMB literature on
observational constraints and specifically in the study by
Komatsu and Spergel in [74]. ) The linear, that is, initial,
power spectrum is given by

P0(k) =M2(k, z)PΦ(k), (161)



Advances in Astronomy 41

while the initial bispectrum and trispectrum are

B0(k1, k2, k3) =M(k1)M(k2)M(k3)BΦ(k1, k2, k3),

T0(k1, k2, k3, k4)=M(k1)M(k2)M(k3)M(k4)TΦ(k1, k2, k3, k4).
(162)

Notice that, given these simple relations between curvature
and primordial matter correlators, issues such as the prop-
erty of separability discussed in Section 2.2 for the CMB
bispectrum are not present in the case of three-dimensional,
large-scale structure observables.

The nonlinear power spectrum is obtained perturbatively
from the expansion

〈
δk1δk2

〉 = 〈
δ(1)

k1
δ(1)

k2

〉
+
(〈
δ(1)

k1
δ(2)

k2

〉
+ perm.

)
+
〈
δ(2)

k1
δ(2)

k2

〉

+
(〈
δ(1)

k1
δ(3)

k2

〉
+ perm.

)
+ · · · ,

(163)

where the term 〈δ(1)
k1
δ(1)

k2
〉 corresponds to the linear solution,

P0(k), while the other terms represent, in analogy with
perturbation theory in quantum field theory, one- and
higher-loop corrections as they involve integrations over

internal momenta. In particular, the term 〈δ(1)
k1
δ(2)

k2
〉 vanishes

for Gaussian initial conditions as it depends on the initial
bispectrum B0 (see [167] for an analysis of nonlinear
corrections to the matter power spectrum due to primordial
non-Gaussianity).

In a similar fashion, nonlinear corrections in (156)
provide a perturbative expansion for the matter bispectrum:

〈
δk1δk2δk3

〉

=
〈
δ(1)

k1
δ(1)

k2
δ(1)

k3

〉
+
(〈
δ(1)

k1
δ(1)

k2
δ(2)

k3

〉
+ perm.

)

+
(〈
δ(1)

k1
δ(2)

k2
δ(2)

k3

〉
+ perm.

)
+
(
〈δ(1)

k1
δ(1)

k2
δ(3)

k3
〉 + perm.

)
+· · ·.
(164)

In this case, the leading-order contributions are given by the

tree-level terms 〈δ(1)
k1
δ(1)

k2
δ(1)

k3
〉 and 〈δ(1)

k1
δ(1)

k2
δ(2)

k3
〉, with the first

being the initial component and the second corresponding to
a contribution to the matter bispectrum due to gravity alone,
of the form

Btree
G (k1, k2, k3) = 2F2(k1, k2)P0(k1)P0(k2) + 2 perm. (165)

Notice that this contribution is present even for Gaussian
initial conditions as it depends only on the initial power
spectrum P0 and describes the emergence of non-Gaussianity
due to gravitational instability. The leading-order, tree-level
expression of the matter bispectrum with non-Gaussian
initial conditions is therefore given in terms of the sum

Btree(k1, k2, k3) = B0(k1, k2, k3; z) + Btree
G (k1, k2, k3; z). (166)

This expression corresponds to the first two terms on the
r.h.s. of (155) for the skewness, which can be obtained from
(166) by integration. For instance, the contribution to the

skewness induced by gravity, in the unsmoothed case, is
obtained from Btree

G as

〈
δ3〉 =

∫
d3k1d

3k2B
tree
G (k1, k2, k3)

= 6
∫
d3k1d

3k2P(k1)P(k2)F2(k1, k2),

(167)

and, integrating over the angles,

〈
δ3〉 = 34

7

[
4π
∫
dkk2P(k)

]2

= 34
7

〈
δ2〉2

, (168)

corresponding to the result of (154).
The possibility of distinguishing the primordial compo-

nent B0 from the gravity-induced one BG relies on their
specific and distinct dependence on scale, on the triangular
configuration, shape and on redshift. For a primordial non-
Gaussianity described by a curvature bispectrum obeying the
hierarchical scaling BΦ ∼ P2

Φ, typical of weakly non-Gaussian
models such as the local and equilateral ones, the different
redshift and scale dependence of the two contributions are
evident in their ratio for equilateral triangles (k1 = k2 =
k3 = k), given by (The first equality is in fact identical for
local, equilateral, and orthogonal non-Gaussianity, simply by
definition of the equilateral bispectrum, (53), introduced in
[8] and of the orthogonal bispectrum introduced in [18],

where f
eq.

NL and f
orthog.

NL are precisely the amplitudes that
provide the same value for the curvature bispectrum as the
local model for equilateral configurations. )

B0(k, k, k; z)
Btree
G (k, k, k; z)

= 7
4

fNL

M(k; z)
k→ 0∼ fNL

k2D(z)
. (169)

We therefore expect, for a wide range of non-Gaussian
models, the initial contribution B0 to be larger at large
scales and at high redshift. Figure 15(a) shows the two
contributions and their sum for equilateral configurations
B(k, k, k) as a function of k. Moreover Figure 15(b), 15(c),
and 15(d) show the effect of the primordial component for
different non-Gaussian models, for values of the respective
parameters fNL corresponding to the current 95% C.L. limits
[18, 68] and with the shaded area indicating the allowed
region.

In addition, Btree
G presents a specific dependence on

triangle shapes, determined by gravitational instability and
described by (165) at tree level. The shape dependence of
B0, determined by the specific non-Gaussian model under
consideration, is generically different. Such differences can be
explicitly shown in plots of the reduced bispectrum, defined
as

Q(k1, k2, k3) = B(k1, k2, k3)
P(k1)P(k2) + 2 perm.

, (170)

which removes the redshift and scale dependencies of the
gravity contribution. Figure 16 shows the reduced bispec-
trum Q(k1, k2, k3) at tree-level in perturbation theory, at
z = 1 for k1 = 0.01 hMpc−1, k2 = 1.5k1 as a function of
the angle θ between k1 and k2. In all panels, the continuous



42 Advances in Astronomy

500

1000

5000

1× 104

5× 104

B
(k

,k
,k

)

0.01 0.02 0.05 0.1

Matter bispectrum, z = 1 (equil. configurations)

k (h MPc−1)

Gravity + initial, fNL = 100
Gravity
Initial, fNL = 100

(a)

500

1000

5000

1× 104

5× 104

B
(k

,k
,k

)

0.01 0.02 0.05 0.1

Matter bispectrum, z = 1 (equil. configurations)

k (h MPc−1)

Gravity
G + local NG, −4 < fNL < 80

(b)

500

1000

5000

1× 104

5× 104

B
(k

,k
,k

)

0.01 0.02 0.05 0.1

Matter bispectrum, z = 1 (equil. configurations)

k (h MPc−1)

Gravity
G + equil. NG, −125 < fNL < 435

(c)

500

1000

5000

1× 104

5× 104

B
(k

,k
,k

)

0.01 0.02 0.05 0.1

Matter bispectrum, z = 1 (equil. configurations)

k (h MPc−1)

Gravity
G + orthog. NG, −369 < fNL < 71

(d)

Figure 15: Effect of the primordial component for different non-Gaussian models on the equilateral configurations of matter bispectrum,
B(k, k, k), at redshift z = 1, as a function of scale, at tree level in PT. In (a) the continuous line shows the initial component B0 (dotted line),
the gravity-induced component, Btree

G (dashed line) and their sum (continuous line). For equilateral configurations the initial component
coincides for the local, equilateral, and orthogonal models while it vanishes in the folded model. In (b), (c), and (d), continuous lines
show the gravity component alone while dashed lines show the tree-level bispectrum including the primordial component for the local (b),
equilateral (c), and orthogonal (d) models assuming the values of fNL corresponding to the 95% C.L. limits as determined by Smith et al.
[68] and Senatore et al. [18] from WMAP observations. The shaded area indicates the currently allowed region.

line represents the gravity-induced term which assumes
larger values for nearly collapsed triangles, that is, for
θ 
 0 or π. This indicates that the probability of finding
larger values for the matter density in triplets of points
forming a squeezed or folded triangle is larger than that for
nearly equilateral triangles. This prediction is confirmed by
the typical filamentary nature of the large-scale structure,
evident from snapshots of N-body simulations or images
of redshift surveys, since along these filaments it is easier
to form collapsed triangles than equilateral ones. It should
be stressed that the bispectrum is, in fact, the lowest-order

statistic sensitive to the three dimensionality of structures
and that these features are not captured by the information
contained in the power spectrum alone. The effects of the
primordial component on the matter bispectrum are shown
by the dashed lines which correspond, as in Figure 15, to the
2-σ limits from CMB observations, in the case of the local
(a), equilateral (b) and orthogonal (c) models while they
correspond to the values fNL = ±300 in the folded case, for
which no experimental bounds are available. Although the
large scales k1 = 0.01 hMpc−1 and k2 = 0.015 hMpc−1 and
the relatively high redshift z = 1 have been chosen to enhance
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Figure 16: Effect of the primordial component for different non-Gaussian models on the matter reduced bispectrum, as a function of the
triangle shape. The continuous line shows the reduced bispectrum Q(k1, k2, k3) at tree level in PT for Gaussian initial conditions at redshift
z = 1 assuming k1 = 0.01 h Mpc−1, k2 = 1.5 k1 as a function of the angle θ between k1 and k2. Dashed lines show the reduced bispectrum
including the primordial component for the local (a), equilateral (b), orthogonal (c), and folded (d) models. For the local, equilateral, and
orthogonal models we assume the values of fNL corresponding to the 95% C.L. limits as determined by Smith et al. [68] and Senatore et al.
[18] from WMAP observations. The shaded area indicates the currently allowed region. For the folded model, for which no observational
constraints are available, the values fNL = ±300 are considered.

the effect of the non-Gaussian component, these triangles are
not completely out of reach for future, large-volume surveys.
Primordial non-Gaussianity modifies, in very specific ways,
the shape dependence of the matter bispectrum produced by
gravitational instability.

While the dependence of the matter bispectrum on scale
and redshift is responsible for the specific behavior of the
skewness of the matter density field on the smoothing scale R
and redshift, the sensitivity to the triangle shape is completely

lost in analysis of the density higher-order moments. Instead,
accurate measurements of the bispectrum, when achievable,
offer in principle the possibility to disentangle the different
contributions when triangles of different size and shape are
included in the analysis.

The matter bispectrum is not, unfortunately, a direct
observable. While we will discuss later how the statistical
properties of the matter distribution can be inferred from
galaxy redshift surveys, we should mention that the shear
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field in weak lensing surveys is another observable directly
related to the matter distribution. The observational con-
sequences on theweak lensing bispectrum, of a primordial
non-Gaussian component (of the local type) such as the one
in (166), have been explored by Takada and Jain in [168].
The authors find that the primordial component alone (i.e.,
without contamination from the gravitational one) could
be detected if f loc

NL > 150 f 1/2
sky , assuming lmax 
 500 and

a tomography over four redshift bins for a galaxy number
density of ng = 100 arcmin−2. The large cosmic variance
for low 	’s makes difficult the detection of the primordial
component, prominent instead at larger scales. As we will
see in the next section, primordial non-Gaussianity has some
effect on small scales as well, due to the nonlinear evolution
of structures.

4.2.2. Second-Order Corrections. The simple prediction of
(166) for the matter bispectrum is expected to be valid
at the largest observable scales and at high redshift, where
nonlinear evolution is subdominant. Despite the fact that
such conditions correspond as well to the regime where a
detection of the initial component B0 is favored, the effects
of non-Gaussian initial conditions can be significant even
at smaller scales and at low redshift. Since these effects
are the result of nonlinear gravitational evolution and non-
Gaussian initial conditions, it is no longer possible to identify
distinct contributions resulting from distinct sources of non-
Gaussianity, as it is the case for the tree-level expression of
(166). Nevertheless, it is possible to distinguish individual
corrections in PT to the matter bispectrum depending exclu-
sively on the initial power spectrum P0, and therefore present
as well for Gaussian initial conditions, and corrections
depending instead on higher-order initial correlators, such
as the initial bispectrum B0 and trispectrum T0, which can
be interpreted as small-scale effects due to non-Gaussian
initial conditions. One-loop corrections in PT for Gaussian
initial conditions have been studied by Scoccimarro in [169]
and Scoccimarro et al. in [170], while the extension of
these results to non-Gaussian initial conditions is studied by
Sefusatti in [171].

A comparison of these results with measurements of the
matter bispectrum in N-body simulations [133] with non-
Gaussian initial conditions of the local kind can be found
in the study by Sefusatti et al. in [172]. Figure 17 shows
the equilateral configurations of the matter bispectrum
measured in N-body simulations together with predictions
from perturbation theory at tree level (dashed line) and one
loop (continuous line). In particular, Figure 17(a) considers
B(k, k, k) for Gaussian initial conditions while Figure 17(b)
shows the same quantity divided by the tree-level prediction
in PT to highlight the small-scales nonlinear behavior.
Figures 17(c) and 17(d) show, respectively, the ratio and
the difference between the matter bispectrum with an initial
local component corresponding to fNL = 100 and the
Gaussian case. The agreement between one-loop predictions
and the simulations results is quite remarkable, while we
notice that the tree-level prediction fails to accurately
describe the effect of primordial non-Gaussianity already at
relatively large scales.

The significance of these relatively small corrections to
individual configurations is to be considered in relation
to the much larger number of configurations that can be
measured as we include smaller and smaller scales, and
they could lead to a measurable effect when considered in
terms of the cumulative signal-to-noise ratio. On the other
hand, these effects loose in part the shape dependence of the
original initial bispectrum and require an accurate model
(perhaps beyond standard perturbation theory) and strong
priors on the underlying cosmological parameters to be
distinguished from the nonlinear, “Gaussian” component. A
step in the direction of improved predictions is offered by the
promising results of the Renormalized Perturbation Theory
[173–175] and of the Renormalization Group approach [176,
177]. The extension of the latter to the case of non-Gaussian
initial conditions has been recently considered by Bartolo et
al. in [178], which studies specific predictions for the matter
power spectrum and bispectrum.

4.3. The Galaxy Bispectrum. From the discussion above,
we could expect that future, large-volume and high-redshift
galaxy surveys will be able to directly detect a possible,
large primordial component to the matter bispectrum by
measurements of the galaxy bispectrum, or at least provide
constraints on the non-Gaussian parameters comparable to
the constraints from measurements of the CMB bispectrum.
Such an expectation is motivated by the simple observation
that the number of Fourier modes available in a three-
dimensional, ideal, all-sky galaxy survey is in principle
much larger than the number of modes available in two-
dimensional CMB maps.

The galaxy distribution is, however, a less direct probe of
the early Universe than the CMB temperature fluctuations.
On top of the nonlinear evolution of structures and its
contribution to higher-order correlation functions, one has
to take into account the nonlinear nature of galaxy bias, being
itself responsible for additional non-Gaussianity. An analysis
of the galaxy bispectrum should therefore be able to detect
a small primordial component by separating it from these
primary contributions.

In this respect, an even more complex picture, due to
additional and somehow unexpected effects of primordial
non-Gaussianity on galaxy bias, has been emerging in the
last couple of years, following the results of Dalal et al. [132].
N-body simulations have shown, in fact, that nonlinear bias
and an initial bispectrum are not two distinct sources of
non-Gaussianity for the galaxy bispectrum, not even at large
scales! Instead a local initial component can significantly
affect the bias relation precisely at large scales, adding extra
corrections. In the spirit of a review and since we do not
have, at the time of writing, a satisfactory model of the galaxy
bispectrum in presence of non-Gaussian initial conditions,
in this section we will summarize earlier results, while
in Section 4.3.5 we will present the recent developments
that radically changed our understanding of the effects
of local non-Gaussianity on the large-scale structure and
finally comment, in Section 4.3.6, on some consequences for
galaxy bispectrum measurements as far as current research
provides.
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Figure 17: (a), (b) Equilateral configurations of the matter bispectrum measured in N-body simulations with Gaussian initial conditions
(data points) and tree-level (dashed lines) and one-loop (continuous lines) predictions in perturbation theory. (b) shows the ratio to the
tree-level prediction with acoustic oscillations removed. (c), (d) Ratio (c) and difference (d) between the matter bispectrum measured in
realizations with local non-Gaussian initial conditions ( fNL = 100) and the Gaussian case, compared with PT predictions, from [172].

4.3.1. The Galaxy Bispectrum and Local Bias. Until recently,
it was commonly assumed, even for non-Gaussian initial
conditions, that the galaxy overdensity δg(x), defined in terms
of the galaxy density ng(x) and its mean ng as

δg(x) ≡ ng(x)− ng
ng

, (171)

can be expressed, at large-scales, as a local function of the
matter density contrast, δ(x), (Properly speaking we should

consider here the smoothed matter density contrast, that is,
δR(x) = ∫

d3x′WR(x − x′)δ(x′) with WR being a top-hat
filter function. For simplicity, we implicitly assume a smooth
density field, so that, for large enough filtering scale, for
example, R ∼ 10 h−1Mpc, matter perturbations are small,
δ � 1.) that is,

δg(x) = f [δ(x)]. (172)

Such a reasonable expectation is based on the fact that the
physics of galaxy formation operates on much smaller scales,
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below the typical halo size than those we are interested in.
At large scales, where fluctuations are small, δR � 1, we can
consider the Taylor expansion [159]

δg(x) = b1δ(x) +
1
2
b2δ

2(x) +
1
3!
b3δ

3(x) + · · · , (173)

describing the bias relation between galaxy and matter in
terms of a series of constant bias parameters, bi. This expan-
sion allows for a consistent extension of the perturbative
expressions for the matter correlators to the galaxy ones.
In fact, from (173) we can derive the galaxy three-point
function in position space

〈
δg(x1)δg(x2)δg(x3)

〉

= b3
1 〈δ(x1)δ(x2)δ(x3)〉

+ b2
1b2

〈
δ(x1)δ(x2)δ2(x3)

〉
+ perm. + · · · ,

(174)

and the tree-level expression for the galaxy bispectrum given
by

Bg(k1, k2, k3)

= b3
1B

tree(k1, k2, k3) + b2
1b2

[
P0(k1)P0(k2) + 2 perm.

]
,

(175)

where the second term on the r.h.s., proportional to the
quadratic bias parameter b2, is of the same order of the
gravity-induced contribution to the matter bispectrum Btree

G ,
(165). Relying on this simple result, measurements of the
galaxy bispectrum have been considered in the first place, in
the context of Gaussian initial conditions, as a way to deter-
mine the bias parameters and break the degeneracy between
linear bias (b1) and the amplitude of matter fluctuations
(e.g., σ8), otherwise affecting power spectrum measurements
[165, 179–185]. In this respect, the corresponding reduced
galaxy bispectrum is

Qg(k1, k2, k3) ≡ Bg(k1, k2, k3)

Pg(k1)Pg(k2) + 2 perm.

= 1
b1
Q(k1, k2, k3) +

b2

b2
1

,

(176)

where Q is the reduced matter bispectrum (including a
possible initial contribution) and the effect of nonlinear bias
is simply given by an additive constant term. As already
mentioned, measurements of triangular configurations dif-
ferent in shape and size allow to disentangle the different
sources of non-Gaussianity and determine independently b1

and b2, provided that accurate predictions for the matter
bispectrum, from PT or N-body simulations, are available
[186, 187] and the effects of redshift distortions and the
survey geometry are properly taken into account [165, 188].

In particular, if we allow the possibility of non-Gaussian
initial conditions, then the matter bispectrum includes an
initial contribution, so that we can rewrite (176) at tree level

explicitly as

Qtree
g = 1

b1

[
QI
(
fNL
)

+Qtree
G

]
+
b2

b2
1

, (177)

and we can extend the analysis to obtain simultaneous
constraints on the bias parameters and on the parameter
determining the amplitude of the primordial bispectrum,
that is, fNL. A first conservative estimate of the possibilities
offered by this method in measurements of the galaxy
bispectrum in the 2dF Galaxy Redshift Survey [189] and in
the Sloan Digital Sky Survey (SDSS), [190] is given by Verde
et al. in [191] as a simple extension of previous results for
the bias alone [181] suggesting that a primordial component
could be detected for values of a local fNL of the order of
103-104. As we will see in the next sections, a complete
analysis of the galaxy bispectrum, including all measurable
configurations, can improve this estimate by more than an
order of magnitude: Scoccimarro et al. [192] forecast in fact
for the SDSS limits of the order of fNL 
 100.

Among the various observational issues in analyses of
galaxy correlators, for example, finite volume effects or
completeness of the galaxy samples, we stress that partic-
ularly relevance has the problem of redshift distortions.
Redshift distortions have in fact a significant impact on the
shape dependence of the galaxy bispectrum, particularly at
small scales [165, 183, 193]. A recent treatment of redshift
distortions in bispectrum predictions (with Gaussian initial
conditions) can be found in the study by Smith et al. in [188].

4.3.2. A Bispectrum Estimator. In this section, we define
a simple estimator for the measurement of the galaxy
bispectrum in N-body simulations as well as actual data.
This allows us to derive an expression for the bispectrum
variance and define a Fisher matrix for an analysis of
the galaxy bispectrum in terms of the non-Gaussian (and
bias) parameters. In the next section we will consider a
proper likelihood analysis and the effects of the bispectrum
covariance. Since what follows can be applied in general
to bispectrum measurements, we will consider, to simplify
the notation, the case of the matter density field in Fourier
space, described by the density contrast δk. We will point
out relevant differences in the application to the galaxy
distribution.

For a cubic box of volume V , a bispectrum estimator can
be defined as [170]

B̂(k1, k2, k3)

≡ Vf

VB(k1, k2, k3)

∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3δD
(

q123
)
δq1δq2δq3 ,

(178)

where Vf ≡ k3
f = (2π)3/V is the volume of the fundamental

cell and where each integration is defined over the bin
qi ∈ [ki − Δk/2, ki + Δk/2] centered at ki and of size Δk
equal to a multiple of the fundamental frequency k f . The
Dirac delta function δD(q123) ensures that the wavenumbers
q1, q2, and q3 indeed form a closed triangle, as imposed
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by translational invariance, while the normalization factor
VB(k1, k2, k3), given by

VB(k1, k2, k3)

≡
∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3 δD
(

q123
) 
 8π2k1k2k3Δk

3,

(179)

represents the number of fundamental triangular configura-
tions (given by the triplet q1, q2, and q3) that belong to the
triangular configuration bin defined by the triangle sizes k1,
k2, and k3 with uncertainty Δk.

The leading contribution to the bispectrum variance
following from this estimator, in analogy with the power
spectrum case [194], is given by Scoccimarro et al. in [170]
as (This expression (see [192]) corrects a typo in equation
(A.16) of Scoccimarro et al. in [170]. )

ΔB2(k1, k2, k3) = Vf
s123

VB(k1, k2, k3)
Ptot(k1)Ptot(k2)Ptot(k3),

(180)

with the factor s123 = 6, 2, 1, respectively, for equilateral,
isosceles, and general triangles and where

Ptot(k) ≡ P(k) +
1

(2π)3
1
n

, (181)

with the particle (or galaxy) number density n accounting for
the shot noise contribution. In the case of a galaxy distribu-
tion, the matter power spectrum P(k) on the r.h.s. should be
replaced with the galaxy power spectrum, expressed, at large
scales, by Pg(k) = b2

1P(k), under the local bias assumption of
(173). Equation (180) constitutes the Gaussian limit to the
bispectrum variance, as it neglects higher-order corrections
dependent on the three-, four-, and six-point, connected,
correlation functions.

We will not discuss here the theory of the Fourier-space
correlation functions estimation in redshift surveys as this
would take us quite far away from our topic. For the power
spectrum estimation we refer the reader to [195, 196] for a
pedagogical and historical introduction to a rather extensive
literature. It should be noted that only a limited fraction
of these results relative to the power spectrum has been
extended to the bispectrum [165, 181]. No optimal estimator
for fNL, given a specific model, has been studied so far.

4.3.3. The Fisher Matrix Forecasts. In this section we consider
simple forecasts for the constraints on the non-Gaussian
parameters from measurements of the galaxy bispectrum
in future redshift surveys. Specifically, we will consider a
Fisher matrix for reduced galaxy bispectrum Qg in terms
of the non-Gaussian parameter fNL and the linear and
quadratic bias parameters b1 and b2. These three parameters
characterize the relative weight of the different non-Gaussian
contributions to the galaxy bispectrum. Since the possibility
to detect a primordial component relies on our ability to
separate the three contributions, a robust result should,
at least, involve a marginalization over bias. On the other

hand, we will assume all cosmological parameters as known.
This is in part justified by the weak dependence of the
matter-reduced bispectrum on cosmology discussed in the
previous section. In this respect, it can be shown that the
reduced bispectrum has the same signal-to-noise ratio as the
bispectrum. For given triangular configurations, in fact,

(
S

N

)
(k1,k2,k3)

≡ Qg(k1, k2, k3)

ΔQg(k1, k2, k3)

 Bg(k1, k2, k3)

ΔBg(k1, k2, k3)
, (182)

since the variance ofQ is dominated by the variance of B (see,
for instance, [192]).

The Fisher matrix can be written as

Fαβ ≡
∑

triangles

∂Qg

∂pα

∂Qg

∂pβ

1
ΔQ2

g
, (183)

where the indices α and β run over the parameters of interest
fNL, b1, and b2, while the reduced bispectrum variance, as
mentioned above, can be expressed in first approximation as

ΔQ2
g(k1, k2, k3) 


ΔB2
g (k1, k2, k3)[

Pg(k1)Pg(k2) + 2 perm.
]2 , (184)

with ΔB2
g given by (180). Notice that ΔQ2

g depends on
the linear bias parameter b1. The sum over the triangles
configurations can be explicitly defined in terms of three
sums over the wavenumbers k1, k2, and k3 in steps of Δk:

∑
triangles

≡
kmax∑

k1=kmin

k1∑
k2=kmin

k2∑
k3=k∗min

, (185)

with k∗min = max(kmin, |k1−k2|) to ensure that a close triangle
can be formed and with kmax representing the minimal
physical scale included in the analysis. Clearly, larger values
of kmax correspond to a much larger number of available
configurations. For this reason, in fact, the cumulative signal-
to-noise ratio for the bispectrum, that is, the sum of the
signal-to-noise ratio over all measurable configurations,
grows more rapidly with kmax than it does for the power
spectrum. On the other hand, we expect the primordial
component to decrease significantly at small scales (high-k).
In practice, however, kmax can be defined as the smallest scale
at which we can trust our model for the galaxy bispectrum,
in our case, the tree-level expression in (177).

In Figure 18, the forecasted errors on bias parameters
and non-Gaussian parameters as a function of kmax for an
ideal geometry galaxy survey of volume V = 10 h−3 Gpc3

and a galaxy number density of ng = 5 × 10−3 h3 Mpc−3 at
redshift z = 1 (dashed, red lines) and z = 3 (continuous,
blue lines) are shown. The negligible difference between
the results for the non-Gaussian parameters at different
redshift is a consequence of the fact that the signal-to-noise
ratio of the primordial component to the matter and galaxy
bispectrum for a single triangular configuration, B0/ΔB,
is, in our approximation, constant, both as a function of
redshift and scale. This is not the case for the contributions
due to gravitational instability and bias. It is clear that



48 Advances in Astronomy

10−4

10−3

0.01

0.1

Δ
b 1
/b

1

0.1 1

kmax

V = 10 h−3 GPc3

ng = 5× 10−3 h3 MPc−3

kmax = 0.47 h Mpc−1

z = 1

z = 3

kmax = 0.17 h Mpc−1

(Gaussian I.C.)

(a)

10−3

0.01

0.1

1

Δ
b 2
/b

2

0.1 1

kmax

(Gaussian I.C.)

(b)

1

10

Δ
flo

ca
l

N
L

0.1 1

kmax

(c)

10

102

Δ
feq

u
il.

N
L

0.1 1

kmax

(d)

Figure 18: (a), (b) Predicted errors on galaxy bias parameters b1 (a) and b2 (b) as a function of the maximum wavenumber kmax considered
for the sum defining the Fisher matrix, (185). The analysis corresponds to an ideal geometry survey of volume V = 10 h−3 Gpc3 and a galaxy
number density of ng = 5× 10−3 h3 Mpc−3. Dashed (red) lines assume a mean redshift of z = 1, while continuous (blue) lines assume z = 3.
Both assume that Gaussian initial conditions; that is, fNL = 0. The vertical lines correspond to the value of kmax determined as the inverse of
the distance scale R defined by the condition σ(R, z) = 0.5. (c), (d) Predicted errors on the non-Gaussian parameters f loc

NL (c) and f
eq.

NL (d),
marginalized over the bias parameters, as a function of kmax. The effect of shot noise is evident only at very high values of kmax, while for
realistic surveys one can expect a more significant effect at lower k. The relatively high value ng = 5 × 10−3 h3 Mpc−3 has been chosen here
just for illustrative purposes, from the study by Sefusatti and Komatsu in [197].

the choice of kmax significantly affects the final result. For
instance, Sefusatti and Komatsu [197] define kmax, for a given
survey, as the inverse of the scale R given by the condition
σ(R, z) = 0.5 to ensure that the tree-level predictions is

applied within the mildly nonlinear range. Notice that the
choice of kmax depends on redshift, since at larger redshift
we can expect a larger range of validity of perturbation
theory predictions, both for matter and galaxy bispectrums.
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The dependence on the survey volume is simply given by
∼ 1/

√
V .

Scoccimarro et al. [192], from a Fisher matrix analysis
as the one described above, have shown that the 2dF and
SDSS surveys should be able to probe values of f loc

NL � 100,
assuming that kmax = 0.3 h Mpc−1. They suggested as well
that an all-sky survey with a galaxy number density of ng ∼
3 × 10−3 h3 Mpc−3 up to redshift z ∼ 1 can probe values of
f loc
NL of order unity.

Sefusatti and Komatsu [197] provided more specific
predictions for a choice of planned and proposed high-
redshift galaxy surveys, based on a similar Fisher approach,
for the errors on non-Gaussian parameters both for the
local and equilateral models. It is found that, for equilateral
non-Gaussianity, the degeneracy between the non-Gaussian
parameter f

eq.
NL and the bias parameters is severe. This is

due to the fact that the specific shape dependence of the
initial contribution, being somehow complementary to the
shape dependence of the bispectrum induced by gravity
which is low for nearly equilateral triangles, reduces to a
certain extent the overall shape dependence of the total
matter bispectrum. In this case, it is then more difficult to
distinguish the total matter bispectrum from the component
due to nonlinear bias, which at tree-level approximation
is a simple constant in the expression for the reduced
bispectrum Q, (177). On the other hand, such degeneracy
extends to unphysical regions of the b1-b2 plane and it
can be significantly reduced by introducing a correlation
between linear and quadratic biases as the one predicted
by the halo model. The marginalization over bias can be
then replaced by a marginalization over the parameters
of the Halo Occupation Distribution describing the galaxy
population. Sefusatti and Komatsu [197] find that future
large-volume surveys (V ∼ 100 h−3 Gpc3 at z ∼ 1, 2),
designed to accurately measure acoustic oscillations in the
galaxy correlation function and thus map the late-time
expansion of the Universe, should be able to probe f loc

NL ∼ 4
and f

eq.
NL ∼ 20, that is, values comparable to those expected

from future CMB missions. At that time they constituted
the best forecasts for constraints on fNL from large-scale
structure measurements. These results implied, in particular,
that, if Planck will indeed detect primordial non-Gaussianity,
a confirmation by large-scale structure observations will be
required to firmly establish such an important discovery.

4.3.4. Effects of Covariance and Current Results. The simple
Fisher matrix analysis described in the previous section
makes several approximations, starting with the assumption
of an ideal geometry for the survey under consideration, and
the Gaussian variance for the galaxy bispectrum configura-
tions. In fact we can expect a proper treatment of the survey
selection function and of the bispectrum covariance to have
a significant impact on the estimation of the non-Gaussian
(and bias) parameters. Triangular bispectrum configurations
at the largest scales probed by a realistic redshift survey
(where the initial component should provide the largest
corrections) are indeed highly correlated, because of the
limited number of measurable Fourier modes.

The issue of bispectrum covariance has been studied in
[165, 184, 185, 192]. For instance, Scoccimarro et al. [192]
compare the Fisher matrix results for an ideal survey with
a volume and galaxy number density similar to those of
the main sample of the SDSS, with the predictions resulting
from a likelihood analysis of the same survey, including the
effects of survey geometry and covariance. Such analysis
involves all measurable triangular configurations defined
by wavenumbers k1, k2, k3 ≤ 0.3 h Mpc−1, with Δk =
0.015 h Mpc−1, resulting in a total number of triangle bins,
NT = 1015. The estimation of the corresponding, 1015 ×
1015, bispectrum covariance matrix clearly represents a chal-
lenging computational problem as it cannot be determined
from a relatively small number of N-body simulations.
This work uses instead a code [165] implementing particle
displacements as predicted by second-order Lagrangian per-
turbation theory (2LPT, see, for instance, [70] and references
therein) to produce 6, 000 realizations of the density field.
Such a large number of realizations are in fact necessary
for an accurate determination of the covariance matrix. In
addition, the 2LPT results, including particle velocities, allow
for an exact redshift mapping. Each mock catalog, in redshift
space, is then weighted according to the Feldman-Kaiser-
Peacock (FKP) procedure [165, 181, 194] to take into account
the SDSS selection function. The same covariance matrix is
compared to analytic expressions in the study by Sefusatti et
al. in [184].

Given a proper estimate of the covariance matrix, a
likelihood function for the reduced bispectrum Qn can be
defined in terms of the normalized bispectrum eigenmodes
q̂n that diagonalize it [165]. These can be expressed as

q̂n =
NT∑
m=1

γmn
Qm −Qm

ΔQm
, (186)

where Qm ≡ 〈Qm〉, ΔQ2
m ≡ 〈(Qm − Qm)2〉 and their signal-

to-noise ratio is given by

(
S

N

)
n
= 1
λn

∣∣∣∣∣∣
NT∑
m=1

γmn
Qm

ΔQm

∣∣∣∣∣∣, (187)

where λn represents the eigenvalue for q̂n, with 〈q̂n q̂m〉 =
λ2
n δnm. The eigenmodes presenting the largest signal-to-

noise ratio can be easily interpreted by considering how
they weight different bispectrum configurations. In fact, the
largest signal-to-noise ratio corresponds to an eigenmode
defined by a nearly equal weighting of all triangles, and
it therefore represents the overall bispectrum amplitude.
The next eigenmode weights instead with opposite sign
triangles close to the equilateral shape and nearly collinear
triangle. Each eigenmode represents in fact a fraction of
the information contained in the bispectrum configurations,
and a crucial role in this respect is played by the shape and
scale dependence. To illustrate this point, Figure 19 (from
[192]) shows the 95% C.L. limits on f loc

NL from the likelihood
analysis of the IRAS PSCz catalog [198] as a function of the
number of eigenmodes included.

Although the diagonalization of the covariance matrix
does not ensure the exact independence of the eigenmodes,
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Figure 19: 95% confidence limits on fNL from the PSCz galaxy bis-
pectrum after marginalization over bias parameters, as a function of
the number of eigenmodes included in the likelihood analysis, from
the study by Scoccimarro et al. in [192].

which can still present non-vanishing higher-order cor-
relations, it has been shown that this is nevertheless a
reasonable assumption in practice [165]. This allows us
to write a likelihood function for the non-Gaussian and
bias parameters, denoted generically as pα, in terms of the
product of the probability distribution functions Pn(x) for
each individual eigenmode; that is,

L
({
pα
})∝

NT∏
n=1

Pn
[
q̂n
({
pα
})]

. (188)

The probability distributions Pn(x), which can be deter-
mined from the mock catalogs, are not expected in general
to be Gaussian, although this can be in fact a good first-order
approximation in the case of the SDSS main sample [192].

A direct implementation of this kind of analysis, taking
into account all measurable bispectrum configurations and
their covariance, has been performed by Scoccimarro et al.
[199] for different IRAS catalogs [114, 200, 201] and by
Feldman et al. [202] for the IRAS PSCz catalog Saunders et al.
[198] considering that the case of the χ2 model of primordial
non-Gaussianity [192, 203] derives the limit | f loc

NL | < 1800 at
95% C.L. for the bispectrum measured in the PSCz catalog.

Along these lines, Scoccimarro et al. [192] also studied
the constraints on f loc

NL for local non-Gaussianity that could
be obtained from measurements of the galaxy bispectrum in
the SDSS main sample, including the effects of the survey
geometry and bispectrum covariance, forecasting the 1-σ
error Δ f loc

NL 
 150, after marginalization over the bias
parameters. This work compared this more realistic estimate
of the predicted errors on f loc

NL from the likelihood analysis
of the SDSS bispectrum to the Fisher matrix forecast for
an ideal geometry of nearly the same volume and galaxy

density finding a worsening of a factor of 4-5. They point
out, however, that the realistic errors, which are an estimate
from the north part of SDSS alone, should be taken as a
an upper bound to the results actually achievable because
of the FKP weighting scheme, not optimal at the largest
scales where the primordial component is the largest and
because of the fact that extra signal can be found as well in
open configurations, not considered there, due to the broken
translation invariance. We might add, based on the results
of Section 4.2.2, that nonlinear corrections present for non-
Gaussian initial conditions might increase the overall signal
due to a nonzero fNL, particularly on small scales where a
large number of triangular configurations can be measured.

At this point we should remind the reader that all of
the results discussed so far on the galaxy bispectrum and
its significance for constraining primordial non-Gaussianity
assume the expression (177) to be a reliable prediction.
As we will see in the remainder of this section, this is
not the case, as additional effects of non-Gaussian initial
conditions have to be taken into account. Nevertheless, the
primordial component, whose direct detection has been the
main target of the earlier works discussed above, is still
expected to provide a contribution to the galaxy bispectrum,
and there are good reasons to believe that these results
can be still interpreted as a “conservative estimate” of the
possibilities offered by bispectrum measurements in the
large-scale structure to test the Gaussianity of the initial
conditions.

4.3.5. Primordial Non-Gaussianity and Nonlocal Galaxy Bias.
The constraints and forecasts discussed so far in this
section are based on the tree-level expression for the galaxy
bispectrum, (177), derived under the assumption of local
bias, (173). As anticipated, our understanding of galaxy bias
in presence of primordial non-Gaussianity radically changed
in the last two years, after Dalal et al. [132] presented
measurements of the halo power spectrum in simulations
with non-Gaussian initial conditions of the local kind
showing the presence of large corrections at large scales, not
captured by the local bias prescription! Figure 20 shows the
matter-halo cross-power spectrum for different values of fNL

from these simulations, where the unexpected effect of non-
Gaussianity at large scales is evident.

Local bias, (173), in fact, implies a leading contribution
to the galaxy (or halo) power spectrum of the simple form

Pg(k) = b2
1P0(k), (189)

with no dependence on fNL, while the simulations results of
Dalal et al. [132], later confirmed by Desjacques et al. [133],
Grossi et al. [135], and Pillepich et al. [140], are consistent
with a scale-dependent correction to the linear bias of the
form

Pg(k) = [b1 + Δb1(k)]2P0(k), (190)

with

Δb1(k) = 3 fNL(b1 − 1)δc
ΩmH

2
0

k2T(k)D(z)
, (191)
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Figure 20: Matter-halo cross-power spectrum measured in simula-
tions with local non-Gaussian initial conditions for different values
of fNL, from the study by Dalal et al. in [132].

where δc 
 1.68 is the linear critical density for spherical
collapse, extrapolated at z = 0. Such correction therefore
increases with the scale, with redshift via the growth factor
D(z) and with the non-Gaussian parameter fNL, and vanishes
for unbiased populations (b1 = 1).

A theoretical interpretation, based on the peak-
background split [204], has been assumed by Afshordi and
Tolley [131], Dalal et al. [132], Giannantonio and Porciani
[205], Slosar et al. [206], and, with a somehow different
derivation, by McDonald [207]. According to these works,
the local relation between the galaxy density and the matter
density in (173) is modified, in presence of local primordial
non-Gaussianity, to include an explicit dependence on the
primordial curvature perturbation, Φ; that is,

δg(x)

= b1δ(x)+c1
(
fNL
)
Φ(x)+

1
2
b2δ

2(x)+c2
(
fNL
)
δ(x)Φ(x)+· · · ,

(192)

where the factors c1 and c2 are proportional to fNL and
depend, in turn, on the linear and quadratic bias parameters
b1 and b2. See the study by Giannantonio and Porciani
in [205] for a detailed derivation of this expression in
the context of the peak-background split. The galaxy two-
point function will be given by the following perturbative
expansion:
〈
δg(x1)δg(x2)

〉

= b2
1〈δ(x1)δ(x2)〉 + b1c1

(
fNL
)〈δ(x1)Φ(x2)〉 + perm. · · · ,

(193)

where the second term can be rewritten as the scale
dependence of the linear bias parameter of (191), with

the 1/k2 behavior resulting from the relation between δk

and Φk given by M(k) ∼ k2. Giannantonio and Porciani
[205] describe, in fact, the galaxy distribution as multivariate
distribution, although the matter density δ and the curvature
Φ are not two independent random fields, but they are
related by the Poisson, (160). It should be noted that no
derivation of a similar effect (in the context of the peak-
background split) due to a different kind of primordial non-
Gaussianity (if feasible) has been, so far, proposed. The
derivations presented in the works cited above, in fact, all rely
on the relatively simple expression defining the local model
(6) while their generalization to a model defined by a generic
initial bispectrum is a quite challenging problem.

Following the results of Dalal et al. [132], moreover, an
apparently different explanation, resulting in fact in a very
similar but distinct effect on the galaxy power spectrum,
has been proposed by Matarrese and Verde [208] and
Taruya et al. [167]. Taruya et al. [167], starting from the
local bias prescription of (173), point out that the next-to-
leading-order correction to the galaxy two-point function
in presence of local primordial non-Gaussianity represents,
in fact, a large correction, identical up to a constant factor,
in the large-scale limit, to the bias correction of (191). The
perturbative expression for the galaxy power spectrum is
given by

Pg(k) 
 b2
1P(k) + b1b2

∫
d3qB

(
k, q,

∣∣k− q
∣∣), (194)

where the second term, proportional to the quadratic bias
parameter b2 and dependent on the matter bispectrum
B, corresponds to the lowest order, one-loop correction.
Remarkably, for local non-Gaussianity, in the limit k → 0,
such correction presents the same scale and redshift depen-
dence, and, for massive halos or highly biased populations
(b1 � 1), even the same amplitude, as the one resulting
from (191). The expression, however, can be applied to any
model of primordial non-Gaussianity, given the appropriate
initial matter bispectrum (see, for instance, [209]). In the
case of equilateral non-Gaussianity, the correction is almost
negligible, while local non-Gaussianity appears to be a
limiting case leading to a particularly significant effect. The
same correction has been considered already by Scoccimarro
[203] in the context of χ2 initial conditions, where it leads
to a redefinition of the bias parameters, with no additional
scale-dependence.

Matarrese and Verde [208] presents a different derivation
of an expression similar to the one of (194), based on earlier
works on the density peak correlation function [122, 124]. In
this case, a specific prediction for the bias parameters, valid
however only in the high density threshold limit, is included.
It is interesting to notice that the possibility of large-scale
effects on the correlations of biased distributions has been
explicitly pointed-out by Grinstein and Wise [122], although
without further study.

The two distinct corrections to the galaxy power spec-
trum, one corresponding to the modified bias relation of
(192), the other to the perturbative correction due to non-
linear bias of (194), have been studied in a comprehensive
framework recently by Giannantonio and Porciani [205],
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where the authors suggest that the effect measured in N-body
simulations is mainly due to the multivariate nature of the
galaxy distribution with local primordial non-Gaussianity,
rather than the effect of nonlinear bias (194). In addition,
Desjacques et al. [133] pointed-out that even the galaxy bias
parameters bi, related in the framework of the halo model to
the halo bias parameters bh,i(M) for halo populations of mass
M, present a dependence of fNL due to the effects of non-
Gaussianity on the halo mass function. The picture that has
been emerging in the last years is therefore quite complex and
it should be stressed that a wide consensus in the community
on a well defined model, even for the galaxy power spectrum,
is still lacking. For instance, a discrepancy of the order of
a 10% between predictions and simulations results, did not
find yet a unique interpretation (see discussions in [133, 135,
138, 140, 205]).

This rather surprising effect of local non-Gaussianity
on the bias relation leads, remarkably, to the possibility
of placing limits on f loc

NL from current large-scale structure
observations, already comparable to limits from the CMB!
[131, 206]. Specifically, Slosar et al. [206] derived from
measurements of the cross-correlation of several large-scale
structure datasets and the CMB [210] the 2-σ constraints

−29 < f loc
NL < 70, (195)

leading to a marginal improvement of the WMAP results.
Encouraging predictions for the constraints that can be
derived in future spectroscopic as well as photometric
redshift surveys can be found in the study of Carbone et al. in
[211]. A fair comparison between these forecasts and those
derived for the galaxy bispectrum in the study of Sefusatti
and Komatsu in [197] is clearly not possible as the latter do
not include the effect on the bias relation discussed above.
Two observations, however, are in order. In the first place,
these effects on the galaxy power spectrum are specific of the
local model of non-Gaussianity, while the galaxy bispectrum
is in principle sensitive to any initial component B0. In the
second place, robust results can be obtained from galaxy
power spectrum measurements at large scales in photometric
surveys. The degradation of the information that can be
extracted from bispectrum measurements in photometric
surveys with respect to spectroscopic ones is still to be
properly studied. The impact of photometric errors on the
accurate determination of the bispectrum dependence on the
triangle shape can in fact be significant.

4.3.6. The Galaxy Bispectrum after the Paper of Dalal et
al. in [132]. First steps in the direction of an extension
of the results discussed above to the galaxy bispectrum
have been taken by Jeong and Komatsu [212] and Sefusatti
[171]. Specifically, Jeong and Komatsu [212] considered an
expression for the high-peak three-point function derived by
Matarrese et al. in [124], analogous to the one for the two-
point function studied by Matarrese and Verde in [208], and
applied it to the case of local non-Gaussianity. Sefusatti [171]
considered instead the perturbative approach of Taruya et al.
[167] based on the local bias expansion of (173), and applied
it to local and equilateral non-Gaussianity.

These works show that the galaxy bispectrum is expected
to be sensitive to both the initial matter bispectrum B0 as
well as to the initial matter trispectrum T0, by means of a
contribution analogous to (194) and given by

Bg 
 b3
1B(k1, k2, k3) +

b2
1b2

2

∫
d3qT

(
k1, k2, q,

∣∣k3 − q
∣∣),
(196)

which represents a large correction at large scales, with
an asymptotic behavior characterized by an extra 1/k2

factor with respect to the primordial matter bispectrum
component, B0, and a dependence on f 2

NL. In addition,
Sefusatti [171] points out that, unlike the power spectrum,
large-scale corrections due to nonlinear bias are present as
well for equilateral non-Gaussianity (and virtually for any
nonpathological form of the primordial bispectrum and
trispectrum). Figure 21 shows the one-loop corrections to
the galaxy bispectrum due to nonlinear bias and primor-
dial non-Gaussianity under the assumption of local bias
[171]. Figure 21(a) assumes local non-Gaussianity includ-
ing a nonzero initial bispectrum and trispectrum, while
Figure 21(b) assumes a nonzero initial bispectrum of the
equilateral type. Thin lines correspond to Gaussian initial
conditions. The black continuous line represents the matter
bispectrum and therefore the first term on the r.h.s. of
(196), while the blue dashed lines correspond to the second
term. Notice that, at next-to-leading order in PT, the matter
bispectrum B depends on the initial trispectrum T0 as well
as the initial bispectrum B0, so that an effect is present also
for equilateral non-Gaussianity where the figure assumes that
T0 = 0.

It should be noted, however, that these results ignore,
at least for local non-Gaussianity, the modified bias relation
of (192) (see, in this respect, some comments in [205])
and do not provide reliable predictions for the constant bias
parameters. Furthermore, they have not been properly tested
against measurements of the halo bispectrum in numerical
simulations. The only work, at the time of writing, in this
direction is that of Nishimichi et al. [213] which shows,
however, that the dependence of the halo bispectrum on fNL

is roughly consistent with the functional form resulting from
the prediction of (196). The authors attempt as well, using
a simple fit to their measurements, a preliminary forecast
analysis for a future large-volume (100 h−3 Gpc3), high-
redshift survey, finding a detectable value of fNL 
 20, using
a very limited number of configurations. Figure 22 from the
paper by Nishimichi et al. [213] shows measurements of a
set of triangular configurations of the halo bispectrum in
simulations with local non-Gaussian initial conditions, as
a function of the non-Gaussian parameter fNL, where the
dependence of the halo bispectrum on f 2

NL is evident.
A simple but reasonable expectation would be that the

inclusion of the effects of primordial non-Gaussianity on
galaxy bias will improve the results of Sefusatti and Komatsu
[197], which are based on the detectability of the primordial
component alone. Our understanding of these phenomena
is, however, evolving rapidly in these days, and these notes on
recent developments are likely to become outdated relatively
soon.
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Figure 21: Large-scale contributions to the galaxy bispectrum due to primordial non-Gaussianity of the local (a) and equilateral (b)
type described as one-loop corrections assuming a local bias prescription. Thin lines correspond to the contributions for Gaussian initial
conditions, from the study by Sefusatti in [171]; see the reference for further details.

4.4. Running Non-Gaussianity

4.4.1. The Case of a Scale-Dependent fNL. DBI models of
inflation predict, as we have seen, a primordial curvature
bispectrum very close to the equilateral model in its shape
dependence. An additional but quite generic feature of
these models is given by a significant departure from the
hierarchical scaling BΦ(k, k, k) ∼ P2

Φ(k) [15, 17, 19, 214–
216]. More recently, this possibility has been explored as well
in models of local non-Gaussianity [31, 217–220].

Under a phenomenological point of view, this extra scale
dependence can be described by a running fNL(k), or, more
properly, in terms of an amplitude parameter fNL and a
running parameter nNG, defined by

fNL(K) ≡ fNL

(
K

kp

)nNG

, (197)

where kp is a properly chosen pivot scale, while
K(k1, k2, k3) = (k1 + k2 + k3)/3 defines an overall scale
characteristic of the triangular configuration on which
BΦ(k1, k2, k3) depends. In other terms, the fNL(K) defined
above replaces the constant fNL in the definitions of the local
and equilateral bispectra effectively introducing an extra
dependence on scale.

Observational consequences of a running fNL(K) have
been explored by Lo Verde et al. in [137] and Sefusatti et al.
[87], while in the study by Taruya et al. in [167] this effect
is included in the prediction for one-loop corrections to the
matter and galaxy power spectrum.

Lo Verde et al. [137] provided an analysis of the
possibility of constraining the running parameter nNG by
combining current limits from the CMB on the amplitude
parameter fNL at the pivot scale kp = 0.04 Mpc−1 with
future measurements of cluster abundance. The effect of an
nNG, significantly different from 1, can result in a much

larger (or smaller) amount of non-Gaussianity on the smaller
scales relevant for the cluster mass function. Figure 23(a),
from [137] illustrates the difference in the range of scales
probed by different observables. Focusing in particular on
the equilateral model for the curvature bispectrum, this work
assumes the amplitude of fNL(k) to be constrained by the
CMB bispectrum at the pivot point scale kp and derives
the expected constraints on its running by considering the
effective amplitude of fNL(k) at the smaller scales (k ∼
0.3 − 0.6 h Mpc−1) probed by cluster surveys. For an all-sky
cluster survey up to redshift zmax = 1.3, they find the 1-σ
constraints, marginalized over Ωm, σ8, and h, assuming the
fiducial values to be fNL = 38 and nNG = 0, ΔnNG 
 2 with
a Planck prior Δ fNL(k = kp) = 40. Their analysis, however,
does not include the simultaneous limits that measurement
of the CMB bispectrum alone is expected to provide on both
the amplitude fNL and running nNG.

4.4.2. Running Non-Gaussianity and Bispectrum Measure-
ments. Sefusatti et al. [87] perform a Fisher matrix analysis
of the CMB bispectrum to obtain the sensitivity of this
observable to the running of fNL(k). The results in the
case of local non-Gaussianity, assuming the same pivot
kp = 0.04 and marginalizing over the amplitude f loc

NL ,
are the 1-σ uncertainties of ΔnNG 
 0.68(50/ f loc

NL ) f −1/2
sky

for WMAP and ΔnNG 
 0.1(50/ f loc
NL ) f −1/2

sky for Planck,

where f loc
NL stands for the fiducial value of the amplitude

parameter. In the case of equilateral non-Gaussianity, we
have ΔnNG 
 1.1(100/ f

eq.
NL ) f −1/2

sky for WMAP and ΔnNG 

0.3(100/ f

eq.
NL ) f −1/2

sky for Planck. Since it is always possible,
given the observable of interest (e.g., the CMB bispectrum
for a specific experiment) and the non-Gaussian model, to
choose the pivot point in such a way to remove any degen-
eracy between the amplitude and the running parameters,
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Figure 22: Measurements of a set of triangular configurations of the halo bispectrum in N-body simulations with local non-Gaussian initial
conditions, as a function of the non-Gaussian parameter fNL. Large values of the parameter α correspond to more squeezed configurations.
In the upper panels, the dependence of the halo bispectrum on f 2

NL is evident, from the study by Nishimichi et al. in [213].

a measurement of the running parameter comes at no cost
with respect to the determination of the fNL(k = kp).
Notice, however, that, for reasons related to the numerical
implementation of the CMB estimator, Sefusatti et al. [87]
assume, for the overall scale representative of a given
triangular configuration, the geometric mean of the three
wavenumbers; that is, K ≡ (k1k2k3)1/3. While the difference

with the more physically motivated definition in terms of
the arithmetic mean K = (k1 + k2 + k3)/3 is very small for
equilateral non-Gaussianity, in the local model this is not the
case.

Sefusatti et al. [171] consider as well the Fisher matrix
from large-scale structure information, and specifically the
galaxy power spectrum (including the effect on halo bias)
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Figure 23: (a) Range of scales probed by different observables compared with fNL(k) for different values of the running parameter nNG,
from the study by Lo Verde et al. in [137]. (b) Predictions of DBI models showing the peculiar relation between the amplitude f

eq.
NL and the

running nNG for different values of the parameters of the inflaton Lagrangian. The figure includes the Fisher matrix forecasts for combined
CMB and galaxy bispectrum measurements assuming a fiducial f

eq.
NL = −50, from the study by Sefusatti et al. in [87]; see the reference for

further details.

for the local model and the galaxy bispectrum, but in
terms of the simple description of (177), therefore excluding
halo bias effects. This different choice of observables with
respect to the model of primordial non-Gaussianity assumes
a negligible effect of equilateral non-Gaussianity on the
galaxy power spectrum (still to be confirmed by N-body
simulations). It is shown, in particular, that future galaxy
redshift surveys can significantly improve CMB results.
Figure 23(b) shows the contours plots for the 1-σ uncertain-
ties resulting for a joint Fisher matrix analysis of CMB and
large-scale structure information. The expected limits are
plotted against the predictions for the relation between the
amplitude f loc

NL and the running nNG from DBI inflationary
models. It is interesting to notice how these models predict
a stronger running for smaller values of the amplitude
parameter. In this respect, constraining the value of nNG

can place additional limits on the parameters of the inflaton
Lagrangian.

5. Conclusions

Weakly non-Gaussian initial conditions are defined, in most
of the relevant inflationary models, by a non-vanishing
bispectrum for the primordial curvature perturbations. The
most direct observables of this primordial density correlator
are, naturally, the bispectrum of the temperature fluctuations

in the CMB and the bispectrum of the mass distribution
at large scales as probed by galaxy surveys. In this review
we presented an overview of the problems, results, and
expectations connected with the detection of (or constraints
on) primordial non-Gaussianity specifically in bispectrum
measurements of the CMB and LSS.

The CMB is an ideal observable for tests of primordial
NG because temperature and polarization anisotropies can
be described in the linear regime of cosmological perturba-
tions. The statistical properties of the primordial curvature
field are thus directly reflected in the pattern of CMB
fluctuations. As we have seen, tests of primordial NG are
formulated in terms of the estimation of the bispectrum
amplitude fNL for each of the shapes predicted by different
inflationary models. It was originally shown in the literature
that a maximum-likelihood estimator of the bispectrum
optimally extracts all of the fNL information from a CMB
map. Extracting the primordial nonlinear parameter from
the bispectrum has subsequently become the standard way to
test primordial NG in the CMB. The best fNL measurements
to date come from analysis of the WMAP datasets and
roughly constrain the primordial bispectrum amplitude to
be � 100 for the local, equilateral, and orthogonal shapes.
Despite already being very stringent (the NG part of the
CMB temperature anisotropies is constrained at the level
of 10−3 of the total fluctuation), these bounds are still far
from the typical order of magnitude of primordial NG
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predicted by most inflationary models. As we have seen,
the Fisher matrix forecasts show that future results from
the Planck satellite (whose release date is predicted to
be in 2012) will improve previous WMAP constraints by
roughly one order of magnitude, thus impacting the range of
some theoretical predictions. This significant improvement
is due to the better sensitivity of Planck to many more
bispectrum configurations in the analysis, and the possibilty
of exploiting both temperature and polarization datasets.
Another important limitation on current constraints is that
inflationary predictions encompass more shapes than those
that have been constrained so far. The reason why many
shapes remain to be constrained is that they cannot be
written as a separable product of one-dimensional functions
of a single wavenumber. Separability, as we have seen,
is a crucial property since it makes the actual analysis
computationally affordable in terms of CPU time. We
have reviewed recent work showing that this limitation
can also be overcome in future analysis by means of a
fully general, and mathematically well-defined, eigenmode
expansion of the bispectrum shape. Thanks to this, and in
light of the significant improvement in sensitivity provided
by Planck, better and more general CMB constraints on
primordial NG models will be available in the near future.
One caveat is that the high precision of the forthcoming
CMB datasets makes them much more sensitive to other
spurious (i.e., nonprimordial) sources of NG, which could
bias the fNL estimate. Achieving an accurate control on these
contaminants is clearly a crucial goal for future analysis.
As we have seen, much work is being done in order to
predict, detect, and isolate nonprimordial NG effects, but
some issues still have to be addressed. In particular a
complete prediction of the total bispectrum generated by
second-order cosmological perturbations is not yet available,
although a number of effects have been studied in detail.
Accurate characterization of NG from diffuse foreground
residuals is another important issue that will require further
investigation.

For large-scale structure, many aspects of the general
CMB scenario outlined above change, as should be evident
from a comparison of the discussions in Sections 3 and 4. In
the first place, we cannot rely on a direct relation between the
observed galaxy bispectrum and the primordial curvature
bispectrum predicted by inflationary models. As we have
seen, a small departure from Gaussian initial conditions
should result in a correction to the galaxy bispectrum
induced by gravitational instability and nonlinear bias,
constituting the dominant contributions. The nature of this
correction is a complex problem in its own right, since it is
due to the linearly evolved initial matter bispectrum as well
as to the effects of primordial non-Gaussianity on the galaxy
bias relation. Such effects are still under investigations and
we do not have, to date, an accurate theoretical model. On
the other hand, early results from galaxy power spectrum
measurements are very encouraging, albeit restricted at
present to the local non-Gaussian model. Current datasets
already appear to be able to confirm and improve CMB
results. In this respect, it is evident that the ultimate goal
is the implementation of a complete large-scale structure

analysis in terms of all measurable correlators, including
power spectrum, bispectrum, and beyond, that is, an analysis
that fully reflects the non-Gaussian nature of the mass and
galaxy distributions even on large scales.

There are several issues which remain to be resolved,
for which we can identify three main categories. First, we
need to develop a robust model for the galaxy correlators
accurately accounting for small-scale nonlinearities for both
the matter and galaxy density fields, as well as in the presence
of non-Gaussian initial conditions; this also must account
to describe nonlocalities in the bias relation. In this review
we have briefly summarized the state of the art, noting
that our understanding of these phenomena is evolving
rapidly. Secondly, once a reliable model is available, it will
be necessary to develop the machinery that will allow us,
in the event of a future detection, to properly identify the
effects of different models and their bispectrum shapes.
In this respect, the CMB results, presented in Section 3,
provide an important benchmark. Finally, observational
problems connected with redshift surveys, such as the effects
of redshift distortions and/or photometric errors, survey
selection function, completeness, and so forth, will have to
be addressed. We have not discussed these issues here as
they are generic to all large-scale structure experiments, but
they clearly represent a major challenge for the exploitation
of future datasets. Both the first and the last points are
crucial for virtually all of the science goals of future ground-
based or satellite surveys, particularly dark energy studies.
Although only partial results have been obtained so far, there
is every indication that characterising non-Gaussianity in
future galaxy surveys will result in a significant test of the
initial conditions of the Universe.

To summarize, sufficient experimental sensitivity has
been reached recently in CMB experiments (namely,
WMAP) to allow for meaningful constraints on the non-
linear parameter fNL for several different families of mod-
els. These results are already arguably the most stringent
quantitative test of the predictions of standard inflation.
However, much tighter constraints on a broader range of
models are expected from the future Planck data release.
Thus a dramatic confrontation is set to continue between
the de facto standard model of inflation and observational
datasets from both the CMB and large-scale structure. Tests
of primordial non-Gaussianity are rapidly becoming one of
the most effective and promising approaches for gleaning
important information about the physical processes that
generated the primordial cosmological perturbations.

Appendix

Basics of Estimation Theory

If a random variable x is characterized by a Probability
Density Function (PDF) p(x | λ) dependent on a parameter
λ, then an estimator for λ is a function E(x) used to infer
the value of the parameter. If a given dataset {xobs} is drawn

from the distribution p(x, λ), then λ̂ = E(xobs) is the estimate
of the parameter λ from the given observations. Since E is
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a function of a random variable, it is itself a random variable.
In the literature a random variable obtained as a function
of another set of random variables is often referred to as a
statistic.

A general property usually required when building an
estimator is its unbiasedness. An estimator for a parameter
λ is unbiased if its average value is equal to the true value of
the parameter:

〈
λ̂
〉
= λ. (A.1)

The standard deviation is generally used to determine the
error bars on λ; that is,

σλ =
√〈(

λ̂− 〈λ̂〉
)2
1

, (A.2)

where 〈·〉 denotes statistical average and σ2 is the variance
of the inferred parameter. When we measure a parameter λ
from a set of observations drawn from the PDF p(x | λ), we
clearly would like our estimate not only to be unbiased, but
also to have as small error bars as possible. In other words,
among all of the possible unbiased estimators of λ that can
be built, we look for the one that minimizes σλ defined in
(A.2). If such an estimator exists, then it is called an optimal
estimator.

In this context a crucial role is played by the Fisher
information matrix, defined as (Note that for simplicity we
work here using a single parameter. The generalization to the
multiparameter case is however straightforward. )

Fλλ =
〈(

∂2
(
ln p(x | λ)

)
∂2λ

)〉
. (A.3)

The Fisher matrix appears in an important theorem, known
as the Cramer-Rao inequality, stating that, for any unbiased
estimator of λ,

σλ ≥ 1√
Fλλ

. (A.4)

This theorem is then placing a lower bound on the error
bars that can be attained when estimating a given parameter
from a given set of observations. No matter which estimator
is used, the smallest attainable error bars will be given by
the square root of the inverse of the Fisher matrix. For a
demonstration of this crucial result see, for example, the
paper by Kendall and Stuart in [221] or, in relation to the
CMB bispectrum, that of Babich in [69]. It is then clear that
the best estimator of a parameter is an unbiased estimator
saturating the Rao-Cramer bound. If such an estimator is
found, then it is impossible to obtain a better estimate using
any other statistic. The question then becomes whether, for a
given PDF p(x | λ), an estimator saturating the Rao-Cramer
bound exists.

It can be shown that a necessary and sufficient condition
for an estimator E(x) of a parameter λ to be optimal is the
following:

∂ ln p(x | λ)
∂λ

= Fλλ(E(x)− λ), (A.5)

where F is the Fisher information matrix just introduced
above.

Another crucial quantity in estimation theory is the
so-called maximum-likelihood estimator. In a maximum-
likelihood (ML) approach we take the observed dataset xobs

as fixed and we estimate λ as the parameter that maximizes
the probability (likelihood) to observe the given data. In

formulae, the ML estimate of λ is the value λ̂ that satisfies

∂ ln p(x | λ)
∂λ

∣∣∣∣∣
λ=λ̂

= 0. (A.6)

In this context the PDF p(x | λ) is often denoted as the
likelihood function and indicated as L(x, λ). Two powerful
theorems involving the likelihood have been proven as
follows.

(1) If there is an optimal unbiased estimator (i.e.,
an unbiased estimator saturating the Rao-Cramer
bound), then it is the maximum-likelihood estimator
or a function of it.

(2) The maximum-likelihood estimator is asymptotically
optimal; that is, it saturates the Rao-Cramer bound
when N → ∞, with N being the number of repeated
observations in our dataset xobs

(1) , . . . , xobs
(N).

These two theorems answer our initial question about the
best estimator choice. The first theorem basically states that,
if a best method exists, then the ML estimator is that method.
Note that this result follows naturally from the optimality
condition (A.5) introduced above. The second theorem says
that for very large datasets the ML-estimator is the best
method, that is, the one saturating the Rao-Cramer bound.
In other words, when dealing with the practical problem of
estimating a parameter from a given dataset, we should in
theory always choose an ML approach. However in practice
this is not always possible: for example, the PDF p(x | λ)
might be too difficult to calculate or sample numerically, or
the ML condition (A.6) (generally a complicated nonlinear
equation) too difficult to solve. In this case other approaches
and different estimators have to be chosen.

An important role is played by the likelihood of Gaussian
random variables. If a given observed variable Oα is charac-
terized by Gaussianly distributed errors, then it is easy to see
that its likelihood is

L = e−χ
2/2, (A.7)

where the χ2 statistic is defined as

χ2 =
∑
α

[
Oα(λ)−Oobs

α (λ)
]2

(ΔOα)2 , (A.8)

where Oobs
α are the measured values of our observable.

In the previous equation we made Oα dependent on a
vector of parameters λ that we want to fit. Our observable
could be, for example, the CMB angular power spectrum
C	 , the primordial power spectrum P(k), or, like in our
case, the angular bispectrum B	1,	2	$ , and we might be
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interested in knowing the sensitivity of our observation to
any cosmological parameter. Our statistical estimate of λ will
be obtained by minimizing χ2. That is clearly equivalent to
maximize the likelihood. Let us now for simplicity work in
the one-dimensional case (i.e., our observable depends on a
single parameter) and expand χ2 about its minimum, that is
about the best fit value of the parameter λ:

χ2(λ) = χ2
(
λ
)

+
1
2
∂2χ2

∂λ2

∣∣∣∣∣
λ=λ

(
λ− λ

)2
. (A.9)

The linear term vanishes here since we are in the minimum.
The quadratic term represents the curvature and defines the
error on λ. If χ2 moves very quickly away from its minimum,
then our determination of λ will be more precise, while the
error on λ will be much larger otherwise. If we define

F ≡ 1
2
∂2χ2

∂λ2

∣∣∣∣∣
λ=λ

, (A.10)

then we can estimate the minimum possible error on λ as
1/
√
F. It is easy to see that the curvature of the likelihood

in the Gaussian case matches exactly the definition of the
Fisher matrix given above. The 1/

√
F lower limit on the

error bar then coincides, as it should, with the Rao-Cramer
bound. This at the same time validates the choice of 1/

√
F

as the error on the parameter and also shows a simple
way to interpret the Rao-Cramer bound. Since the Fisher
matrix represents the curvature of the ln of the likelihood
around its maximum, it also provides an intrinsic minimum
error on the measurement of the parameter. A likelihood
strongly peaked around its maximum for a given parameter
will provide stronger constraints on that parameter and vice
versa. We have however to keep in mind that the curvature
F constructed above is the curvature of the likelihood only
if the distribution of our observable Oα is Gaussian. This,
strictly speaking, is in general not true, but it is a reasonably
good approximation in most cases. (A clarifying example is
provided by the CMB angular power spectrum. We know
that C	 is distributed like a χ2 with 2	+ 1 degrees of freedom,
which rapidly gets close to a Gaussian as 	 grows.) The
Fisher matrix for any observable is then defined as the second
derivative of the χ2 statistic (A.8). If we compute it explicitly,
then we get

Fλλ =
∑
α

1

(ΔOα)2

[(
∂Oα

∂λ

)2

+
(
Oα −Oobs

α

)∂2Oα

∂λ2

]
. (A.11)

The second term in the sum above is generally neglected.
The idea, as explained by Dodelson in [54] or by Press et al.
in [222] is that the observed Oα will oscillate around their
real value, making the difference (Oα−Oobs

α ) oscillate around
zero, resulting in cancellations. We are then left with the
expression generally used in the literature:

Fλλ =
∑
α

1

(ΔOα)2

[(
∂Oα

∂λ

)2
]
. (A.12)

In this paper, we have applied the basic concepts
described in this Appendix to the estimation of the non-
Gaussian parameter f model

NL from the bispectrum of CMB and

LSS datasets. We would like to stress again that we have just
very quickly sketched some essential concepts in estimation
theory here. For excellent and much more comprehensive
reviews of ideas and applications of estimation theory to
cosmology, we refer the reader to the papers by Dodelson
in [54], Martinez et al. in [223], and Tegmark et al. in
[224]. The brief review provided here was actually largely
inspired by those works. A detailed and complete book about
statistical methods and estimation theory is, for example,
that by Kendall and Stuart in [221].
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non-Gaussianity in the cobe DMR 4 year sky maps,” The
Astrophysical Journal, vol. 503, no. 1, pp. L1–L4, 1998.

[61] B. C. Bromley and M. Tegmark, “Is the cosmic microwave
background really non-Gaussian?” The Astrophysical Journal
Letters, vol. 524, no. 2, pp. L79–L82, 1999.

[62] J. Magueijo, “Erratum: “New non-Gaussian feature in
COBE-DMR 4 year maps”,” The Astrophysical Journal Letters,
vol. 532, no. 2, p. L157, 2000.

[63] J. Magueijo, “New non-Gaussian feature in COBE-DMR 4
year maps,” The Astrophysical Journal Letters, vol. 528, no. 2,
pp. L157–L160, 2000.

[64] J. Magueijo, P. G. Ferreira, and K. M. Gorski, “Where is
COBE maps’ non-Gaussianity?” in Proceedings of the 2nd
International Workshop on Particle Physics and the Early
Universe (COSMO ’98), D. O. Caldwell, Ed., vol. 478 of AIP
Conference Proceedings, pp. 176–179, July 1999.

[65] J. Magueijo, P. G. Ferreira, and K. M. Górski, “Evidence
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