572 research outputs found
Comparing models of the periodic variations in spin-down and beam-width for PSR B1828-11
We build a framework using tools from Bayesian data analysis to evaluate
models explaining the periodic variations in spin-down and beam-width of PSR
B1828-11. The available data consists of the time averaged spin-down rate,
which displays a distinctive double-peaked modulation, and measurements of the
beam-width. Two concepts exist in the literature that are capable of explaining
these variations; we formulate predictive models from these and quantitatively
compare them. The first concept is phenomenological and stipulates that the
magnetosphere undergoes periodic switching between two meta-stable states as
first suggested by Lyne et al. The second concept, precession, was first
considered as a candidate for the modulation of B1828-11 by Stairs et al.. We
quantitatively compare models built from these concepts using a Bayesian
odds-ratio. Because the phenomenological switching model itself was informed by
this data in the first place, it is difficult to specify appropriate
parameter-space priors that can be trusted for an unbiased model comparison.
Therefore we first perform a parameter estimation using the spin-down data, and
then use the resulting posterior distributions as priors for model comparison
on the beam-width data. We find that a precession model with a simple circular
Gaussian beam geometry fails to appropriately describe the data, while allowing
for a more general beam geometry provides a good fit to the data. The resulting
odds between the precession model (with a general beam geometry) and the
switching model are estimated as in favour of the precession
model.Comment: 20 pages, 15 figures; removed incorrect factor of (2\pi) from
equation (15), allowed for arbitrary braking index, and revised prior ranges;
overall conclusions unchange
The effect of timing noise on targeted and narrow-band coherent searches for continuous gravitational waves from pulsars
Most searches for continuous gravitational-waves from pulsars use Taylor
expansions in the phase to model the spin-down of neutron stars. Studies of
pulsars demonstrate that their electromagnetic (EM) emissions suffer from
\emph{timing noise}, small deviations in the phase from Taylor expansion
models. How the mechanism producing EM emission is related to any continuous
gravitational-wave (CW) emission is unknown; if they either interact or are
locked in phase then the CW will also experience timing noise. Any disparity
between the signal and the search template used in matched filtering methods
will result in a loss of signal-to-noise ratio (SNR), referred to as
`mismatch'. In this work we assume the CW suffers a similar level of timing
noise to its EM counterpart. We inject and recover fake CW signals, which
include timing noise generated from observational data on the Crab pulsar.
Measuring the mismatch over durations of order months, the effect is
for the most part found to be small. This suggests recent so-called
`narrow-band' searches which placed upper limits on the signals from the Crab
and Vela pulsars will not be significantly affected. At a fixed observation
time, we find the mismatch depends upon the observation epoch. Considering the
averaged mismatch as a function of observation time, we find that it increases
as a power law with time, and so may become relevant in long baseline searches.Comment: 9 pages, 5 figure
Global parameter-space correlations of coherent searches for continuous gravitational waves
The space of phase-parameters (sky-position, frequency, spindowns) of a
coherent matched-filtering search for continuous gravitational waves from
isolated neutron stars shows strong global correlations (``circles in the
sky''). In the local limit this can be analysed in terms of a parameter-space
metric, but the global properties are less well studied. In this work we report
on our recent progress in understanding these global correlations analytically
for short to intermediate (less than a month, say) observation times and
neglecting spindowns. The location of these correlation-circles in
parameter-space is found to be determined mostly by the orbital velocity of the
earth, while the spin-motion of the detector and the antenna-patterns only
contribute significantly to the amplitude of the detection statistic along
these circles.Comment: 10 pages, 6 figures; contribution to GWDAW9, submitted to CQ
Stationary structure of relativistic superfluid neutron stars
We describe recent progress in the numerical study of the structure of
rapidly rotating superfluid neutron star models in full general relativity. The
superfluid neutron star is described by a model of two interpenetrating and
interacting fluids, one representing the superfluid neutrons and the second
consisting of the remaining charged particles (protons, electrons, muons). We
consider general stationary configurations where the two fluids can have
different rotation rates around a common rotation axis. The previously
discovered existence of configurations with one fluid in a prolate shape is
confirmed.Comment: 5 pages, 2 figures. Conference proceedings for the 26th Spanish
Relativity Meeting (ERE 2002), Menorca, Spain, 22-24 Sept. 200
Random template banks and relaxed lattice coverings
Template-based searches for gravitational waves are often limited by the
computational cost associated with searching large parameter spaces. The study
of efficient template banks, in the sense of using the smallest number of
templates, is therefore of great practical interest. The "traditional" approach
to template-bank construction requires every point in parameter space to be
covered by at least one template, which rapidly becomes inefficient at higher
dimensions. Here we study an alternative approach, where any point in parameter
space is covered only with a given probability < 1. We find that by giving up
complete coverage in this way, large reductions in the number of templates are
possible, especially at higher dimensions. The prime examples studied here are
"random template banks", in which templates are placed randomly with uniform
probability over the parameter space. In addition to its obvious simplicity,
this method turns out to be surprisingly efficient. We analyze the statistical
properties of such random template banks, and compare their efficiency to
traditional lattice coverings. We further study "relaxed" lattice coverings
(using Zn and An* lattices), which similarly cover any signal location only
with probability < 1. The relaxed An* lattice is found to yield the most
efficient template banks at low dimensions (n < 10), while random template
banks increasingly outperform any other method at higher dimensions.Comment: 13 pages, 10 figures, submitted to PR
Searching for Galactic White Dwarf Binaries in Mock LISA Data using an F-Statistic Template Bank
We describe an F-statistic search for continuous gravitational waves from
galactic white-dwarf binaries in simulated LISA Data. Our search method employs
a hierarchical template-grid based exploration of the parameter space. In the
first stage, candidate sources are identified in searches using different
simulated laser signal combinations (known as TDI variables). Since each source
generates a primary maximum near its true "Doppler parameters" (intrinsic
frequency and sky position) as well as numerous secondary maxima of the
F-statistic in Doppler parameter space, a search for multiple sources needs to
distinguish between true signals and secondary maxima associated with other,
"louder" signals. Our method does this by applying a coincidence test to reject
candidates which are not found at nearby parameter space positions in searches
using each of the three TDI variables. For signals surviving the coincidence
test, we perform a fully coherent search over a refined parameter grid to
provide an accurate parameter estimation for the final candidates. Suitably
tuned, the pipeline is able to extract 1989 true signals with only 5 false
alarms. The use of the rigid adiabatic approximation allows recovery of signal
parameters with errors comparable to statistical expectations, although there
is still some systematic excess with respect to statistical errors expected
from Gaussian noise. An experimental iterative pipeline with seven rounds of
signal subtraction and re-analysis of the residuals allows us to increase the
number of signals recovered to a total of 3419 with 29 false alarms.Comment: 29 pages, 11 figures; submitted to Classical and Quantum Gravit
Estimating the sensitivity of wide-parameter-space searches for gravitational-wave pulsars
This paper presents an in-depth study of how to estimate the sensitivity of
searches for gravitational-wave pulsars -- rapidly-rotating neutron stars which
emit quasi-sinusoidal gravitational waves. It is particularly concerned with
searches over a wide range of possible source parameters, such as searches over
the entire sky and broad frequency bands. Traditional approaches to estimating
the sensitivity of such searches use either computationally-expensive Monte
Carlo simulations, or analytic methods which sacrifice accuracy by making an
unphysical assumption about the population of sources being searched for. This
paper develops a new, analytic method of estimating search sensitivity which
does not rely upon this unphysical assumption. Unlike previous analytic
methods, the new method accurately predicts the sensitivity obtained using
Monte Carlo simulations, while avoiding their computational expense. The change
in estimated sensitivity due to properties of the search template bank, and the
geographic configuration of the gravitational wave detector network, are also
investigated.Comment: 16 figures, 2 tables, REVTeX 4.1; minor typos corrected from v2,
updated reference
Entrainment coefficient and effective mass for conduction neutrons in neutron star crust: II Macroscopic treatment
Phenomena such as pulsar frequency glitches are believed to be attributable
to differential rotation of a current of ``free'' superfluid neutrons at
densities above the ``drip'' threshold in the ionic crust of a neutron star.
Such relative flow is shown to be locally describable by adaption of a
canonical two fluid treatment that emphasizes the role of the momentum
covectors constructed by differentiation of action with respect to the
currents, with allowance for stratification whereby the ionic number current
may be conserved even when the ionic charge number Z is altered by beta
processes. It is demonstrated that the gauge freedom to make different choices
of the chemical basis determining which neutrons are counted as ``free'' does
not affect their ``superfluid'' momentum covector, which must locally have the
form of a gradient (though it does affect the ``normal'' momentum covector
characterising the protons and those neutrons that are considered to be
``confined'' in the nuclei). It is shown how the effect of ``entrainment''
(whereby the momentum directions deviate from those of the currents) is
controlled by the (gauge independent) mobility coefficient K, estimated in
recent microscopical quantum mechanical investigations, which suggest that the
corresponding (gauge dependent) ``effective mass'' m* of the free neutrons can
become very large in some layers. The relation between this treatment of the
crust layers and related work (using different definitions of ``effective
mass'') intended for the deeper core layers is discussed.Comment: 21 pages Latex. Part II of article whose Part I (Simple microscopic
models) is given by nucl-th/0402057. New version extended to include figure
- …
