11,692 research outputs found
Energetic ion dynamics in Jupiter's plasma sheet
A systematic study of energetic ion trajectories in Jupiter's plasma sheet region predicts a significant role for both regular and stochastic types of motion and reveals several aspects of the ion dynamics that aid in the interpretation of Galileo observations. The motion is generally confined to the vicinity of the current sheet in a way that is proportional to the variable current sheet thickness as seen in the particle and field data. The radial extent of the trajectories increases with rigidity and initial radial distance from the planet, explaining the corresponding lack of high-rigidity ions and decreasing radial gradients at lower rigidity. Ion intensity increases associated with changes in current sheet thickness suggest an acceleration region at ∼25 to 30 R_J. Energy dispersion in ion events at larger radial distances can be explained by such a source combined with elastic ion scattering
Angiogenesis-dependent and independent phases of intimal hyperplasia.
BACKGROUND: Neointimal vascular smooth muscle cell (VSMC) proliferation is a primary cause of occlusive vascular disease, including atherosclerosis, restenosis after percutaneous interventions, and bypass graft stenosis. Angiogenesis is implicated in the progression of early atheromatous lesions in animal models, but its role in neointimal VSMC proliferation is undefined. Because percutaneous coronary interventions result in induction of periadventitial angiogenesis, we analyzed the role of this process in neointima formation. METHODS AND RESULTS: Local injury to the arterial wall in 2 different animal models induced periadventitial angiogenesis and neointima formation. Application of angiogenesis stimulators vascular endothelial growth factor (VEGF-A165) or a proline/arginine-rich peptide (PR39) to the adventitia of the injured artery induced a marked increase in neointimal thickening beyond that seen with injury alone in both in vivo models. Inhibition of either VEGF (with soluble VEGF receptor 1 [sFlt1]) or fibroblast growth factor (FGF) (with a dominant=negative form of FGF receptor 1 [FGF-R1DN]), respectively, signaling reduced adventitial thickening induced by VEGF and PR39 to the level seen with mechanical arterial injury alone. However, neither inhibitor was effective in preventing neointimal thickening after mechanical injury when administered in the absence of angiogenic growth factor. CONCLUSIONS: Our findings indicate that adventitial angiogenesis stimulates intimal thickening but does not initiate it
Behaviour of three charged particles on a plane under perpendicular magnetic field
We consider the problem of three identical charged particles on a plane under
a perpendicular magnetic field and interacting through Coulomb repulsion. This
problem is treated within Taut's framework, in the limit of vanishing center of
mass vector , which corresponds to the strong magnetic
field limit, occuring for example in the Fractional Quantum Hall Effect. Using
the solutions of the biconfluent Heun equation, we compute the eigenstates and
show that there is two sets of solutions. The first one corresponds to a system
of three independent anyons which have their angular momenta fixed by the value
of the magnetic field and specified by a dimensionless parameter , the ratio of , the magnetic length, over , the Bohr
radius. This anyonic character, consistent with quantum mechanics of identical
particles in two dimensions, is induced by competing physical forces. The
second one corresponds to the case of the Landau problem when .
Finally we compare these states with the quantum Hall states and find that the
Laughlin wave functions are special cases of our solutions under certains
conditions.Comment: 15 pages, 3 figures, Accepeted in JP
Searching for Galactic White Dwarf Binaries in Mock LISA Data using an F-Statistic Template Bank
We describe an F-statistic search for continuous gravitational waves from
galactic white-dwarf binaries in simulated LISA Data. Our search method employs
a hierarchical template-grid based exploration of the parameter space. In the
first stage, candidate sources are identified in searches using different
simulated laser signal combinations (known as TDI variables). Since each source
generates a primary maximum near its true "Doppler parameters" (intrinsic
frequency and sky position) as well as numerous secondary maxima of the
F-statistic in Doppler parameter space, a search for multiple sources needs to
distinguish between true signals and secondary maxima associated with other,
"louder" signals. Our method does this by applying a coincidence test to reject
candidates which are not found at nearby parameter space positions in searches
using each of the three TDI variables. For signals surviving the coincidence
test, we perform a fully coherent search over a refined parameter grid to
provide an accurate parameter estimation for the final candidates. Suitably
tuned, the pipeline is able to extract 1989 true signals with only 5 false
alarms. The use of the rigid adiabatic approximation allows recovery of signal
parameters with errors comparable to statistical expectations, although there
is still some systematic excess with respect to statistical errors expected
from Gaussian noise. An experimental iterative pipeline with seven rounds of
signal subtraction and re-analysis of the residuals allows us to increase the
number of signals recovered to a total of 3419 with 29 false alarms.Comment: 29 pages, 11 figures; submitted to Classical and Quantum Gravit
Nonresonant inelastic light scattering in the Hubbard model
Inelastic light scattering from electrons is a symmetry-selective probe of
the charge dynamics within correlated materials. Many measurements have been
made on correlated insulators, and recent exact solutions in large dimensions
explain a number of anomalous features found in experiments. Here we focus on
the correlated metal, as described by the Hubbard model away from half filling.
We can determine the B1g Raman response and the inelastic X-ray scattering
along the Brillouin zone diagonal exactly in the large dimensional limit. We
find a number of interesting features in the light scattering response which
should be able to be seen in correlated metals such as the heavy fermions.Comment: 9 pages, 7 figures, typeset with ReVTe
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol
The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations
- …
