250 research outputs found
Measurement of Inclusive Spin Structure Functions of the Deuteron
We report the results of a new measurement of spin structure functions of the
deuteron in the region of moderate momentum transfer ( = 0.27 -- 1.3
(GeV/c)) and final hadronic state mass in the nucleon resonance region (
= 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam
at Jefferson Lab off a dynamically polarized cryogenic solid state target
(ND) and detected the scattered electrons with the CEBAF Large
Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal
double spin asymmetry and the spin structure function . Our
data are generally in reasonable agreement with existing data from SLAC where
they overlap, and they represent a substantial improvement in statistical
precision. We compare our results with expectations for resonance asymmetries
and extrapolated deep inelastic scaling results. Finally, we evaluate the first
moment of the structure function and study its approach to both the
deep inelastic limit at large and to the Gerasimov-Drell-Hearn sum rule
at the real photon limit (). We find that the first moment varies
rapidly in the range of our experiment and crosses zero at between
0.5 and 0.8 (GeV/c), indicating the importance of the resonance at
these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys.
Rev.
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA
Deep--inelastic scattering events with a leading baryon have been detected by
the H1 experiment at HERA using a forward proton spectrometer and a forward
neutron calorimeter. Semi--inclusive cross sections have been measured in the
kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T
<= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV,
or a neutron with energy E' >= 160 GeV. The measurements are used to test
production models and factorization hypotheses. A Regge model of leading baryon
production which consists of pion, pomeron and secondary reggeon exchanges
gives an acceptable description of both semi-inclusive cross sections in the
region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading
neutron data are used to estimate for the first time the structure function of
the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.
A New Measurement of the Radiative Decay Width
High precision measurements of the differential cross sections for
photoproduction at forward angles for two nuclei, C and Pb, have
been performed for incident photon energies of 4.9 - 5.5 GeV to extract the
decay width. The experiment was done at Jefferson
Lab using the Hall B photon tagger and a high-resolution multichannel
calorimeter. The decay width was extracted by
fitting the measured cross sections using recently updated theoretical models
for the process. The resulting value for the decay width is . With the 2.8% total uncertainty, this result is a factor of 2.5 more
precise than the current PDG average of this fundamental quantity and it is
consistent with current theoretical predictions.Comment: 4 pages, 5 figure
Dependence of Quadrupole Strength in the Transition
Models of baryon structure predict a small quadrupole deformation of the
nucleon due to residual tensor forces between quarks or distortions from the
pion cloud. Sensitivity to quark versus pion degrees of freedom occurs through
the dependence of the magnetic (), electric (), and
scalar () multipoles in the
transition. We report new experimental values for the ratios
and over the range = 0.4-1.8 GeV, extracted from
precision data using a truncated multipole expansion.
Results are best described by recent unitary models in which the pion cloud
plays a dominant role.Comment: 5 pages, 5 figures, 1 table. To be published in Phys. Rev. Lett.
(References, figures and table updated, minor changes.
The e p -> e' p eta reaction at and above the S11(1535) baryon resonance
New cross sections for the reaction e p -> ep eta are reported for total
center of mass energy W = 1.5--1.86 GeV and invariant momentum transfer Q^2 =
0.25--1.5 GeV^2. This large kinematic range allows extraction of important new
information about response functions, photocouplings, and eta N coupling
strengths of baryon resonances. Expanded W coverage shows sharp structure at W
\~ 1.7 GeV; this is shown to come from interference between S and P waves and
can be interpreted in terms of known resonances. Improved values are derived
for the photon coupling amplitude for the S11(1535) resonance.Comment: 11 pages, RevTeX, 5 figures, submitted to Phys. Rev. Let
Observation of Nuclear Scaling in the Reaction at 1
The ratios of inclusive electron scattering cross sections of He,
C, and Fe to He have been measured for the first time. It is
shown that these ratios are independent of at Q1.4 (GeV/c) for
1.5 where the inclusive cross section depends primarily on the
high-momentum components of the nuclear wave function. The observed scaling
shows that the momentum distributions at high-momenta have the same shape for
all nuclei and differ only by a scale factor. The observed onset of the scaling
at Q1.4 and 1.5 is consistent with the kinematical expectation that
two nucleon short range correlations (SRC) are dominate the nuclear wave
function at 300 MeV/c. The values of these ratios in the scaling
region can be related to the relative probabilities of SRC in nuclei with
A3. Our data demonstrate that for nuclei with A12 these
probabilities are 5-5.5 times larger than in deuterium, while for He it is
larger by a factor of about 3.5.Comment: 11 pages, 10 figure
Charmonium Production in Deep Inelastic Scattering at HERA
The electroproduction of J/psi and psi(2S) mesons is studied in elastic, quasi-elastic and inclusive reactions for four momentum transfers 2 Q^2 80 GeV^2 and photon-proton centre of mass energies 25 W 180 GeV. The data were taken with the H1 detector at the electron proton collider HERA in the years 1995 to 1997. The total virtual photon-proton cross section for elastic J/psi production is measured as a function of Q^2 and W. The dependence of the production rates on the square of the momentum transfer from the proton (t) is extracted. Decay angular distributions are analysed and the ratio of the longitudinal and transverse cross sections is derived. The ratio of the cross sections for quasi-elastic psi(2S) and J/psi meson production is measured as a function of Q^2. The results are discussed in terms of theoretical models based upon perturbative QCD. Differential cross sections for inclusive and inelastic production of J/psi mesons are determined and predictions within two theoretical frameworks are compared with the data, the non-relativistic QCD factorization approach including colour octet and colour singlet contributions, and the model of Soft Colour Interactions
- …
