102 research outputs found

    Quantum measurement of a mesoscopic spin ensemble

    Full text link
    We describe a method for precise estimation of the polarization of a mesoscopic spin ensemble by using its coupling to a single two-level system. Our approach requires a minimal number of measurements on the two-level system for a given measurement precision. We consider the application of this method to the case of nuclear spin ensemble defined by a single electron-charged quantum dot: we show that decreasing the electron spin dephasing due to nuclei and increasing the fidelity of nuclear-spin-based quantum memory could be within the reach of present day experiments.Comment: 8 pages, 2 figures; minor changes, published versio

    Cavity-induced coherence effects in spontaneous emission from pre-Selection of polarization

    Get PDF
    Spontaneous emission can create coherences in a multilevel atom having close lying levels, subject to the condition that the atomic dipole matrix elements are non-orthogonal. This condition is rarely met in atomic systems. We report the possibility of bypassing this condition and thereby creating coherences by letting the atom with orthogonal dipoles to interact with the vacuum of a pre-selected polarized cavity mode rather than the free space vacuum. We derive a master equation for the reduced density operator of a model four level atomic system, and obtain its analytical solution to describe the interference effects. We report the quantum beat structure in the populations.Comment: 6 pages in REVTEX multicolumn format, 5 figures, new references added, journal reference adde

    Nonlinear Optics and Quantum Entanglement of Ultra-Slow Single Photons

    Get PDF
    Two light pulses propagating with ultra-slow group velocities in a coherently prepared atomic gas exhibit dissipation-free nonlinear coupling of an unprecedented strength. This enables a single-photon pulse to coherently control or manipulate the quantum state of the other. Processes of this kind result in generation of entangled states of radiation field and open up new prospectives for quantum information processing

    Resonantly enhanced nonlinear optics in semiconductor quantum wells: An application to sensitive infrared detection

    Get PDF
    A novel class of coherent nonlinear optical phenomena, involving induced transparency in quantum wells, is considered in the context of a particular application to sensitive long-wavelength infrared detection. It is shown that the strongest decoherence mechanisms can be suppressed or mitigated, resulting in substantial enhancement of nonlinear optical effects in semiconductor quantum wells.Comment: 4 pages, 3 figures, replaced with revised versio

    Gain Components in Autler-Townes Doublet from Quantum Interferences in Decay Channels

    Get PDF
    We consider non-degenerate pump-probe spectroscopy of V-systems under conditions such that interference among decay channels is important. We demonstrate how this interference can result in new gain features instead of the usual absorption features. We relate this gain to the existence of a new vacuum induced quasi-trapped-state. We further show how this also results in large refractive index with low absorption.Comment: Total 8 pages, 6 figures, submitted to Physical Review

    A device for feasible fidelity, purity, Hilbert-Schmidt distance and entanglement witness measurements

    Full text link
    A generic model of measurement device which is able to directly measure commonly used quantum-state characteristics such as fidelity, overlap, purity and Hilbert-Schmidt distance for two general uncorrelated mixed states is proposed. In addition, for two correlated mixed states, the measurement realizes an entanglement witness for Werner's separability criterion. To determine these observables, the estimation only one parameter - the visibility of interference, is needed. The implementations in cavity QED, trapped ion and electromagnetically induced transparency experiments are discussed.Comment: 6 pages, 3 figure

    Vacuum Induced Coherences in Radiatively Coupled Multilevel Systems

    Get PDF
    We show that radiative coupling between two multilevel atoms having near-degenerate states can produce new interference effects in spontaneous emission. We explicitly demonstrate this possibility by considering two identical V systems each having a pair of transition dipole matrix elements which are orthogonal to each other. We discuss in detail the origin of the new interference terms and their consequences. Such terms lead to the evolution of certain coherences and excitations which would not occur otherwise. The special choice of the orientation of the transition dipole matrix elements enables us to illustrate the significance of vacuum induced coherence in multi-atom multilevel systems. These coherences can be significant in energy transfer studies.Comment: 13 pages including 8 figures in Revtex; submitted to PR

    Ultra-Slow Light and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas

    Full text link
    We report the observation of small group velocities of order 90 meters per second, and large group delays of greater than 0.26 ms, in an optically dense hot rubidium gas (~360 K). Media of this kind yield strong nonlinear interactions between very weak optical fields, and very sharp spectral features. The result is in agreement with previous studies on nonlinear spectroscopy of dense coherent media

    Circuit Quantum Electrodynamics with a Spin Qubit

    Full text link
    Circuit quantum electrodynamics allows spatially separated superconducting qubits to interact via a "quantum bus", enabling two-qubit entanglement and the implementation of simple quantum algorithms. We combine the circuit quantum electrodynamics architecture with spin qubits by coupling an InAs nanowire double quantum dot to a superconducting cavity. We drive single spin rotations using electric dipole spin resonance and demonstrate that photons trapped in the cavity are sensitive to single spin dynamics. The hybrid quantum system allows measurements of the spin lifetime and the observation of coherent spin rotations. Our results demonstrate that a spin-cavity coupling strength of 1 MHz is feasible.Comment: Related papers at http://pettagroup.princeton.edu

    New dinuclear cyanido complexes with amine alcohol ligand: synthesis, characterization and biotechnological application potential

    Get PDF
    In this study, the cyanido complexes given by the formula [Ni(Abut)Ni(CN)4]·8H2O (C1), [Cu(Abut)2Ni(CN)4]·7H2O (C2), [Zn(Abut)Ni(CN)4]·8H2O (C3) and [Cd(Abut)Ni(CN)4]·7H2O (C4) were obtained by microwave synthesis method. The powder forms of the complexes were characterized by elemental, FT-IR spectroscopy, and thermal analysis. And also antibacterial, antibiofilm and anticancer activities were investigated. The splitting stretching bands of cyanido groups in the FT-IR spectra of C1-C4 indicated the assets of terminal and end cyanido groups. The antibacterial activities of C1-C4 were tested with nine Gram negative and six Gram positive bacteria. The most efficient antibacterial activity of complexes was observed at 1000 µg/ml-1 concentration. Anticancer activity was tested using HeLa cell line and MTT test. The studied cyanide complexes have been shown to decrease the viability of HeLa cells with IC50 values 14.86, 6.5, 7.2 and 19.2 µg/ml for C1, C2, C3 and C4 complex, respectively
    corecore