7,162 research outputs found

    The effect of moisture on cellulose nanocrystals intended as a high gas barrier coating on flexible packaging materials

    Get PDF
    Cellulose nanocrystals (CNCs) exhibit outstanding gas barrier properties, which supports their use as a biobased and biodegradable barrier coating on flexible food packaging materials. As highly hydrophilic biopolymers, however, CNCs have a strong sensitivity to water that can be detrimental to applications with fresh foods and in moist conditions due to the loss of barrier properties. In this work, the oxygen and water vapor permeability of polyethylene terephthalate (PET) films coated with CNCs obtained from cotton linters were measured at varying levels of relative humidity, both in adsorption and desorption, and from these data, the diffusion and solubility coefficients were estimated. Therefore, the characterization of CNCs was aimed at understanding the fundamentals of the water-CNCs interaction and proposing counteractions. The CNCs' moisture absorption and desorption isotherms at 25 \uc2\ub0C were collected in the range of relative humidity 0-97% using different techniques and analyzed through GAB (Guggenheim-Anderson-de Boer) and Oswin models. The effects of moisture on the water status, following the freezable water index, and on the crystal structure of CNCs were investigated by Differential Scanning Calorimetry and by X-ray Powder Diffraction, respectively. These findings point to the opportunity of coupling CNCs with hydrophobic layers in order to boost their capabilities as barrier packaging materials

    Cardiovascular Dysfunction Criteria in Critically Ill Children: The PODIUM Consensus Conference

    Full text link
    CONTEXT Cardiovascular dysfunction is associated with poor outcomes in critically ill children. OBJECTIVE We aim to derive an evidence-informed, consensus-based definition of cardiovascular dysfunction in critically ill children. DATA SOURCES Electronic searches of PubMed and Embase were conducted from January 1992 to January 2020 using medical subject heading terms and text words to define concepts of cardiovascular dysfunction, pediatric critical illness, and outcomes of interest. STUDY SELECTION Studies were included if they evaluated critically ill children with cardiovascular dysfunction and assessment and/or scoring tools to screen for cardiovascular dysfunction and assessed mortality, functional status, organ-specific, or other patient-centered outcomes. Studies of adults, premature infants (≤36 weeks gestational age), animals, reviews and/or commentaries, case series (sample size ≤10), and non-English-language studies were excluded. Studies of children with cyanotic congenital heart disease or cardiovascular dysfunction after cardiopulmonary bypass were excluded. DATA EXTRACTION Data were abstracted from each eligible study into a standard data extraction form, along with risk-of-bias assessment by a task force member. RESULTS Cardiovascular dysfunction was defined by 9 elements, including 4 which indicate severe cardiovascular dysfunction. Cardiopulmonary arrest (>5 minutes) or mechanical circulatory support independently define severe cardiovascular dysfunction, whereas tachycardia, hypotension, vasoactive-inotropic score, lactate, troponin I, central venous oxygen saturation, and echocardiographic estimation of left ventricular ejection fraction were included in any combination. There was expert agreement (>80%) on the definition. LIMITATIONS All included studies were observational and many were retrospective. CONCLUSIONS The Pediatric Organ Dysfunction Information Update Mandate panel propose this evidence-informed definition of cardiovascular dysfunction

    Search for GeV Gamma-ray Counterparts of Gravitational Wave Events by CALET

    Get PDF
    We present results on searches for gamma-ray counterparts of the LIGO/Virgo gravitational-wave events using CALorimetric Electron Telescope ({\sl CALET}) observations. The main instrument of {\sl CALET}, CALorimeter (CAL), observes gamma-rays from 1\sim1 GeV up to 10 TeV with a field of view of nearly 2 sr. In addition, the {\sl CALET} gamma-ray burst monitor (CGBM) views \sim3 sr and 2π\sim2\pi sr of the sky in the 7 keV -- 1 MeV and the 40 keV -- 20 MeV bands, respectively, by using two different crystal scintillators. The {\sl CALET} observations on the International Space Station started in October 2015, and here we report analyses of events associated with the following gravitational wave events: GW151226, GW170104, GW170608, GW170814 and GW170817. Although only upper limits on gamma-ray emission are obtained, they correspond to a luminosity of 1049105310^{49}\sim10^{53} erg s1^{-1} in the GeV energy band depending on the distance and the assumed time duration of each event, which is approximately the order of luminosity of typical short gamma-ray bursts. This implies there will be a favorable opportunity to detect high-energy gamma-ray emission in further observations if additional gravitational wave events with favorable geometry will occur within our field-of-view. We also show the sensitivity of {\sl CALET} for gamma-ray transient events which is the order of 10710^{-7}~erg\,cm2^{-2}\,s1^{-1} for an observation of 100~s duration.Comment: 12 pages, 8 figures, 1 table. Accepted for publication in Astrophysical Journa

    On-orbit Operations and Offline Data Processing of CALET onboard the ISS

    Get PDF
    The CALorimetric Electron Telescope (CALET), launched for installation on the International Space Station (ISS) in August, 2015, has been accumulating scientific data since October, 2015. CALET is intended to perform long-duration observations of high-energy cosmic rays onboard the ISS. CALET directly measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20 TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can measure the spectrum of gamma rays well into the TeV range, and the spectra of protons and nuclei up to a PeV. In order to operate the CALET onboard ISS, JAXA Ground Support Equipment (JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established. Scientific operations using CALET are planned at WCOC, taking into account orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences are used to control the CALET observation modes on orbit. Calibration data acquisition by, for example, recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit while maintaining maximum exposure to high-energy electrons and other high-energy shower events by always having the high-energy trigger mode active. The WCOC also prepares and distributes CALET flight data to collaborators in Italy and the United States. As of August 31, 2017, the total observation time is 689 days with a live time fraction of the total time of approximately 84%. Nearly 450 million events are collected with a high-energy (E>10 GeV) trigger. By combining all operation modes with the excellent-quality on-orbit data collected thus far, it is expected that a five-year observation period will provide a wealth of new and interesting results.Comment: 11 pages, 7 figures, published online 27 February 201
    corecore