28,006 research outputs found

    Exchange Monte Carlo Method and Application to Spin Glass Simulations

    Full text link
    We propose an efficient Monte Carlo algorithm for simulating a ``hardly-relaxing" system, in which many replicas with different temperatures are simultaneously simulated and a virtual process exchanging configurations of these replica is introduced. This exchange process is expected to let the system at low temperatures escape from a local minimum. By using this algorithm the three-dimensional ±J\pm J Ising spin glass model is studied. The ergodicity time in this method is found much smaller than that of the multi-canonical method. In particular the time correlation function almost follows an exponential decay whose relaxation time is comparable to the ergodicity time at low temperatures. It suggests that the system relaxes very rapidly through the exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe

    Dust Storms in Space?

    Get PDF
    Primarily from the Pioneer 8 and 9 results, it is concluded that the flux of picogram sized dust particles near the earth's orbit has been constant to within the observational limits over three years of observation. In particular, since dust streams are not observed, they cannot explain microphone detected events. However, the possibility of rare events due to dust blown directly off a cometary nucleus (such as that reported for Comet Bennett) cannot be completely ruled out

    Mass Predictions for Pseudoscalar JPC=0−+J^{PC}=0^{-+} Charmonium and Bottomonium Hybrids in QCD Sum-Rules

    Full text link
    Masses of the pseudoscalar (JPC=0−+)(J^{PC}=0^{-+}) charmonium and bottomonium hybrids are determined using QCD Laplace sum-rules. The effects of the dimension-six gluon condensate are included in our analysis and result in a stable sum-rule analysis, whereas previous studies of these states were unable to optimize mass predictions. The pseudoscalar charmonium hybrid is predicted to have a mass of approximately 3.8 GeV and the corresponding bottomonium prediction is 10.6 GeV. Calculating the full correlation function, rather than only the imaginary part, is shown to be necessary for accurate formulation of the sum-rules. The charmonium hybrid mass prediction is discussed within the context of the X Y Z resonances.Comment: 10 pages, 7 embedded figures. Analysis extended and refined in v

    Grundstate Properties of the 3D Ising Spin Glass

    Full text link
    We study zero--temperature properties of the 3d Edwards--Anderson Ising spin glass on finite lattices up to size 12312^3. Using multicanonical sampling we generate large numbers of groundstate configurations in thermal equilibrium. Finite size scaling with a zero--temperature scaling exponent y=0.74±0.12y = 0.74 \pm 0.12 describes the data well. Alternatively, a descriptions in terms of Parisi mean field behaviour is still possible. The two scenarios give significantly different predictions on lattices of size ≥123\ge 12^3.Comment: LATEX 9pages,figures upon request ,SCRI-9

    Information retrieval system

    Get PDF
    Generalized information storage and retrieval system capable of generating and maintaining a file, gathering statistics, sorting output, and generating final reports for output is reviewed. File generation and file maintenance programs written for the system are general purpose routines

    Run-and-tumble particles with hydrodynamics: sedimentation, trapping and upstream swimming

    Full text link
    We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely perturb the steady state found without them, but for particles in a harmonic trap such a state is quite changed if the run length is larger than the confinement length: a self-assembled pump is formed. Particles likewise confined in a narrow channel show a generic upstream flux in Poiseuille flow: chiral swimming is not required

    Frequency Dependent Viscosity Near the Critical Point: The Scale to Two Loop Order

    Full text link
    The recent accurate measurements of Berg, Moldover and Zimmerli of the viscoelastic effect near the critical point of xenon has shown that the scale factor involved in the frequency scaling is about twice the scale factor obtained theoretically. We show that this discrepancy is a consequence of using first order perturbation theory. Including two loop contribution goes a long way towards removing the discrepancy.Comment: No of pages:7,Submitted to PR-E(Rapid Communication),No of EPS files:

    Entropy-based analysis of the number partitioning problem

    Full text link
    In this paper we apply the multicanonical method of statistical physics on the number-partitioning problem (NPP). This problem is a basic NP-hard problem from computer science, and can be formulated as a spin-glass problem. We compute the spectral degeneracy, which gives us information about the number of solutions for a given cost EE and cardinality mm. We also study an extension of this problem for QQ partitions. We show that a fundamental difference on the spectral degeneracy of the generalized (Q>2Q>2) NPP exists, which could explain why it is so difficult to find good solutions for this case. The information obtained with the multicanonical method can be very useful on the construction of new algorithms.Comment: 6 pages, 4 figure
    • …
    corecore