44,940 research outputs found

    Isolated Galaxies versus Interacting Pairs with MaNGA

    Full text link
    We present preliminary results of the spectral analysis on the radial distributions of the star formation history in both, a galaxy merger and a spiral isolated galaxy observed with MaNGA. We find that the central part of the isolated galaxy is composed by older stellar population (∼\sim2 Gyr) than in the outskirts (∼\sim7 Gyr). Also, the time-scale is gradually larger from 1 Gyr in the inner part to 3 Gyr in the outer regions of the galaxy. In the case of the merger, the stellar population in the central region is older than in the tails, presenting a longer time-scale in comparison to central part in the isolated galaxy. Our results are in agreement with a scenario where spiral galaxies are built from inside-out. In the case of the merger, we find evidence that interactions enhance star formation in the central part of the galaxy.Comment: 7 pages, 2 figures. Proceedings of the EWASS-2015 special session Sp3, accepted for publication in Special Issue "3D View on Interacting and Post-Interacting Galaxies from Clusters to Voids" of open access journal "Galaxies

    Nonlinear optical probe of tunable surface electrons on a topological insulator

    Get PDF
    We use ultrafast laser pulses to experimentally demonstrate that the second-order optical response of bulk single crystals of the topological insulator Bi2_2Se3_3 is sensitive to its surface electrons. By performing surface doping dependence measurements as a function of photon polarization and sample orientation we show that second harmonic generation can simultaneously probe both the surface crystalline structure and the surface charge of Bi2_2Se3_3. Furthermore, we find that second harmonic generation using circularly polarized photons reveals the time-reversal symmetry properties of the system and is surprisingly robust against surface charging, which makes it a promising tool for spectroscopic studies of topological surfaces and buried interfaces

    Domain wall propagation through spin wave emission

    Full text link
    We theoretically study field-induced domain wall (DW) motion in an electrically insulating ferromagnet with hard- and easy-axis anisotropies. DWs can propagate along a dissipationless wire through spin wave emission locked into the known soliton velocity at low fields. In the presence of damping, the mode appears before the Walker breakdown field for strong out-of-plane magnetic anisotropy, and the usual Walker rigid-body propagation mode becomes unstable when the field is between the maximal-DW-speed field and Walker breakdown field.Comment: 4 pages, 4 figure
    • …
    corecore