54,514 research outputs found

    Extended Holographic dark energy

    Full text link
    The idea of relating the infrared and ultraviolet cutoffs is applied to Brans-Dicke theory of gravitation. We find that extended holographic dark energy from the Hubble scale or the particle horizon as the infrared cutoff will not give accelerating expansion. The dynamical cosmological constant with the event horizon as the infrared cutoff is a viable dark energy model.Comment: one reference is corrected, 3 pages, no figure,V3: minor correction

    Interacting non-minimally coupled canonical, phantom and quintom models of holographic dark energy in non-flat universe

    Get PDF
    Motivated by our recent work \cite{set1}, we generalize this work to the interacting non-flat case. Therefore in this paper we deal with canonical, phantom and quintom models, with the various fields being non-minimally coupled to gravity, within the framework of interacting holographic dark energy. We employ the holographic model of interacting dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named LL.Comment: 18 pages, 3 figures. Accepted for publication in IJMPD (2010

    Limits from Weak Gravity Conjecture on Dark Energy Models

    Full text link
    The weak gravity conjecture has been proposed as a criterion to distinguish the landscape from the swampland in string theory. As an application in cosmology of this conjecture, we use it to impose theoretical constraint on parameters of two types of dark energy models. Our analysis indicates that the Chaplygin-gas-type models realized in quintessence field are in the swampland, whereas the aa power-low decay model of the variable cosmological constant can be viable but the parameters are tightly constrained by the conjecture.Comment: Revtex4, 8 pages, 5 figures; References, minor corrections in content, and acknowledgement adde

    Agegraphic Chaplygin gas model of dark energy

    Full text link
    We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.Comment: 8 page

    The Measure for the Multiverse and the Probability for Inflation

    Full text link
    We investigate the measure problem in the framework of inflationary cosmology. The measure of the history space is constructed and applied to inflation models. Using this measure, it is shown that the probability for the generalized single field slow roll inflation to last for NN e-folds is suppressed by a factor exp(3N)\exp(-3N), and the probability for the generalized nn-field slow roll inflation is suppressed by a much larger factor exp(3nN)\exp(-3nN). Some non-inflationary models such as the cyclic model do not suffer from this difficulty.Comment: 16 page

    Thermodynamics of interacting entropy-corrected holographic dark energy in a non-flat FRW universe

    Full text link
    A so-called "entropy-corrected holographic dark energy" (ECHDE), was recently proposed to explain the dark energy-dominated universe with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Using this new definition, we investigate its thermodynamical features including entropy and energy conservation. We describe the thermodynamical interpretation of the interaction between ECHDE and dark matter in a non-flat universe. We obtain a relation between the interaction term of the dark components and thermal fluctuation. Our study further generalizes the earlier works [M.R. Setare and E.C. Vagenas, Phys. Lett. B 666 (2008) 111; B. Wang et al., Phys. Lett. B 662 (2008) 1] in this direction.Comment: 14 pages, no figure, accepted by Int. J. Mod. Phys.

    Observational constraints on patch inflation in noncommutative spacetime

    Full text link
    We study constraints on a number of patch inflationary models in noncommutative spacetime using a compilation of recent high-precision observational data. In particular, the four-dimensional General Relativistic (GR) case, the Randall-Sundrum (RS) and Gauss-Bonnet (GB) braneworld scenarios are investigated by extending previous commutative analyses to the infrared limit of a maximally symmetric realization of the stringy uncertainty principle. The effect of spacetime noncommutativity modifies the standard consistency relation between the tensor spectral index and the tensor-to-scalar ratio. We perform likelihood analyses in terms of inflationary observables using new consistency relations and confront them with large-field inflationary models with potential V \propto \vp^p in two classes of noncommutative scenarios. We find a number of interesting results: (i) the quartic potential (p=4) is rescued from marginal rejection in the class 2 GR case, and (ii) steep inflation driven by an exponential potential (p \to \infty) is allowed in the class 1 RS case. Spacetime noncommutativity can lead to blue-tilted scalar and tensor spectra even for monomial potentials, thus opening up a possibility to explain the loss of power observed in the cosmic microwave background anisotropies. We also explore patch inflation with a Dirac-Born-Infeld tachyon field and explicitly show that the associated likelihood analysis is equivalent to the one in the ordinary scalar field case by using horizon-flow parameters. It turns out that tachyon inflation is compatible with observations in all patch cosmologies even for large p.Comment: 16 pages, 11 figures; v2: updated references, minor corrections to match the Phys. Rev. D versio

    Holographic interacting dark energy in the braneworld cosmology

    Full text link
    We investigate a model of brane cosmology to find a unified description of the radiation-matter-dark energy universe. It is of the interacting holographic dark energy with a bulk-holographic matter χ\chi. This is a five-dimensional cold dark matter, which plays a role of radiation on the brane. Using the effective equations of state ωΛeff\omega^{\rm eff}_{\rm \Lambda} instead of the native equations of state ωΛ\omega_{\rm \Lambda}, we show that this model cannot accommodate any transition from the dark energy with ωΛeff1\omega^{\rm eff}_{\rm \Lambda}\ge-1 to the phantom regime ωΛeff<1\omega^{\rm eff}_{\rm \Lambda}<-1. Furthermore, the case of interaction between cold dark matter and five dimensional cold dark matter is considered for completeness. Here we find that the redshift of matter-radiation equality zeqz_{\rm eq} is the same order as zeqob=2.4×104Ωmh2z^{\rm ob}_{\rm eq}=2.4\times10^{4} \Omega_{\rm m}h^2. Finally, we obtain a general decay rate Γ\Gamma which is suitable for describing all interactions including the interaction between holographic dark energy and cold dark matter.Comment: 17 pages, 4 figure

    Consistency relation for the Lorentz invariant single-field inflation

    Full text link
    In this paper we compute the sizes of equilateral and orthogonal shape bispectrum for the general Lorentz invariant single-field inflation. The stability of field theory implies a non-negative square of sound speed which leads to a consistency relation between the sizes of orthogonal and equilateral shape bispectrum, namely fNLorth.0.054fNLequil.f_{NL}^{orth.}\lesssim -0.054 f_{NL}^{equil.}. In particular, for the single-field Dirac-Born-Infeld (DBI) inflation, the consistency relation becomes fNLorth.0.070fNLequil.0f_{NL}^{orth.}\simeq 0.070 f_{NL}^{equil.}\lesssim 0. These consistency relations are also valid in the mixed scenario where the quantum fluctuations of some other light scalar fields contribute to a part of total curvature perturbation on the super-horizon scale and may generate a local form bispectrum. A distinguishing prediction of the mixed scenario is τNLloc.>(65fNLloc.)2\tau_{NL}^{loc.}>({6\over 5}f_{NL}^{loc.})^2. Comparing these consistency relations to WMAP 7yr data, there is still a big room for the Lorentz invariant inflation, but DBI inflation has been disfavored at more than 68% CL.Comment: 4 pages, 2 figures; v2: title changed, some mistakes corrected; v3: refs added, version accepted for publication in JCA
    corecore