34,414 research outputs found

    Synchronization and fault-masking in redundant real-time systems

    Get PDF
    A real time computer may fail because of massive component failures or not responding quickly enough to satisfy real time requirements. An increase in redundancy - a conventional means of improving reliability - can improve the former but can - in some cases - degrade the latter considerably due to the overhead associated with redundancy management, namely the time delay resulting from synchronization and voting/interactive consistency techniques. The implications of synchronization and voting/interactive consistency algorithms in N-modular clusters on reliability are considered. All these studies were carried out in the context of real time applications. As a demonstrative example, we have analyzed results from experiments conducted at the NASA Airlab on the Software Implemented Fault Tolerance (SIFT) computer. This analysis has indeed indicated that in most real time applications, it is better to employ hardware synchronization instead of software synchronization and not allow reconfiguration

    Thermalization of quark-gluon matter by 2-to-2 and 3-to-3 elastic scatterings

    Get PDF
    Thermalization of quark-gluon matter is studied with a transport equation that includes contributions of 2-to-2 and 3-to-3 elastic scatterings. Thermalization time is related to the squared amplitudes for the elastic scatterings that are calculated in perturbative QCD.Comment: LaTex, 6 pages, 3 figures, talk presented at the 19th international conference on ultra-relativistic nucleus-nucleus collisions, Shanghai, China, Nov. 200

    Elastic Instabilities within Antiferromagnetically Ordered Phase in the Orbitally-Frustrated Spinel GeCo2_2O4_4

    Full text link
    Ultrasound velocity measurements of the orbitally-frustrated GeCo2_2O4_4 reveal unusual elastic instabilities due to the phonon-spin coupling within the antiferromagnetic phase. Shear moduli exhibit anomalies arising from the coupling to short-range ferromagnetic excitations. Diplike anomalies in the magnetic-field dependence of elastic moduli reveal magnetic-field-induced orbital order-order transitions. These results strongly suggest the presence of geometrical orbital frustration which causes novel orbital phenomena within the antiferromagnetic phase.Comment: 5 pages, 3 figure

    Extraordinary sensitivity of the electronic structure and properties of single-walled carbon nanotubes to molecular charge-transfer

    Full text link
    Interaction of single-walled carbon nanotubes with electron donor and acceptor molecules causes significant changes in the electronic and Raman spectra, the relative proportion of the metallic species increasing on electron donation through molecular charge transfer, as also verified by electrical resistivity measurements.Comment: 15 pages, 5 figurre

    Quantum SUSY Algebra of QQ-lumps in the Massive Grassmannian Sigma Model

    Full text link
    We compute the N=2\mathcal{N}=2 SUSY algebra of the massive Grassmannian sigma model in 2+1 dimensions. We first rederive the action of the model by using the Scherk-Schwarz dimensional reduction from N=1\mathcal{N}=1 theory in 3+1 dimensions. Then, we perform the canonical quantization by using the Dirac method. We find that a particular choice of the operator ordering yields the quantum SUSY algebra of the QQ-lumps with cental extension.Comment: 7 pages, references adde

    Optical properties of the Ce and La di-telluride charge density wave compounds

    Full text link
    The La and Ce di-tellurides LaTe2_2 and CeTe2_2 are deep in the charge-density-wave (CDW) ground state even at 300 K. We have collected their electrodynamic response over a broad spectral range from the far infrared up to the ultraviolet. We establish the energy scale of the single particle excitation across the CDW gap. Moreover, we find that the CDW collective state gaps a very large portion of the Fermi surface. Similarly to the related rare earth tri-tellurides, we envisage that interactions and Umklapp processes play a role in the onset of the CDW broken symmetry ground state
    corecore