26,048 research outputs found
Gas flow environment and heat transfer nonrotating 3D program
A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is provided. These data are to be used to evaluate, and verify, three-dimensional internal viscous flow models and computational codes. The analytical contract objective is to select a computational code and define the capabilities of this code to predict the experimental results obtained. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated. Internal flow in a large rectangular cross-sectioned 90 deg. bend turning duct was studied. The duct construction was designed to allow detailed measurements to be made for the following three duct wall conditions: (1) an isothermal wall with isothermal flow; (2) an adiabatic wall with convective heat transfer by mixing between an unheated surrounding flow; and (3) an isothermal wall with heat transfer from a uniformly hot inlet flow
UREA/ammonium ion removal system for the orbiting frog otolith experiment
The feasibility of using free urease enzyme and ANGC-101 ion exchange resin to remove urea and ammonium ion for space system waste water applications was studied. Specifically examined is the prevention of urea and ammonia toxicity in a 30-day Orbiting Frog Otolith (OFO) flight experiment. It is shown that free urease enzyme used in conjunction with ANGC-101 ion-exchange resin and pH control can control urea and amonium ion concentration in unbuffered recirculating water. In addition, the resin does not adversely effect the bullfrogs by lowering the concentration of cations below critical minimum levels. Further investigations on bioburden control, frog waste excretion on an OFO diet, a trade-off analysis of methods of automating the urea/ammonium ion removal system and fabrication and test of a semiautomated breadboard were recommended as continuing efforts. Photographs of test equipment and test animals are shown
Stripes on a 6-Leg Hubbard Ladder
While DMRG calculations find stripes on doped n-leg t-J ladders, little is
known about the possible formation of stripes on n-leg Hubbard ladders. Here we
report results for a 7x6 Hubbard model with 4 holes. We find that a stripe
forms for values of U/t ranging from 6 to 20. For U/t ~ 3-4, the system
exhibits the domain wall feature of a stripe, but the hole density is very
broadened.Comment: 4 pages, 5 figure
Understanding and Improving the Wang-Landau Algorithm
We present a mathematical analysis of the Wang-Landau algorithm, prove its
convergence, identify sources of errors and strategies for optimization. In
particular, we found the histogram increases uniformly with small fluctuation
after a stage of initial accumulation, and the statistical error is found to
scale as with the modification factor . This has implications
for strategies for obtaining fast convergence.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
Weak disorder expansion for localization lengths of quasi-1D systems
A perturbative formula for the lowest Lyapunov exponent of an Anderson model on a strip is presented. It is expressed in terms of an energy-dependent doubly stochastic matrix, the size of which is proportional to the strip width. This matrix and the resulting perturbative expression for the Lyapunov exponent are evaluated numerically. Dependence on energy, strip width and disorder strength are thoroughly compared with the results obtained by the standard transfer matrix method. Good agreement is found for all energies in the band of the free operator and this even for quite large values of the disorder strength
On the metal-insulator transition in the two-chain model of correlated fermions
The doping-induced metal-insulator transition in two-chain systems of
correlated fermions is studied using a solvable limit of the t-J model and the
fact that various strong- and weak-coupling limits of the two-chain model are
in the same phase, i.e. have the same low-energy properties. It is shown that
the Luttinger-liquid parameter K_\rho takes the universal value unity as the
insulating state (half-filling) is approached, implying dominant d-type
superconducting fluctuations, independently of the interaction strength. The
crossover to insulating behavior of correlations as the transition is
approached is discussed.Comment: 7 pages, 1 figur
Quantum -- antiferromagnet on the stacked square lattice: Influence of the interlayer coupling on the ground-state magnetic ordering
Using the coupled-cluster method (CCM) and the rotation-invariant Green's
function method (RGM), we study the influence of the interlayer coupling
on the magnetic ordering in the ground state of the spin-1/2
- frustrated Heisenberg antiferromagnet (- model) on the
stacked square lattice. In agreement with known results for the -
model on the strictly two-dimensional square lattice () we find that
the phases with magnetic long-range order at small and large
are separated by a magnetically disordered (quantum
paramagnetic) ground-state phase. Increasing the interlayer coupling
the parameter region of this phase decreases, and, finally, the
quantum paramagnetic phase disappears for quite small .Comment: 4 pages, 3 figure
Mapping the interstellar medium in galaxies with Herschel/SPIRE
The standard method of mapping the interstellar medium in a galaxy, by observing the molecular gas in the CO 1-0 line and the atomic gas in the 21-cm line, is largely limited with current telescopes to galaxies in the nearby universe. In this letter, we use SPIRE observations of the galaxies
M99 and M100 to explore the alternative approach of mapping the interstellar medium using the continuum emission from the dust. We have compared the methods by measuring the relationship between the star-formation rate and the surface density of gas in the galaxies using both
methods. We find the two methods give relationships with a similar dispersion, confirming that observing the continuum emission from the dust is a promising method of mapping the interstellar medium in galaxies
The Herschel Space Observatory view of dust in M81
We use Herschel Space Observatory data to place observational constraints on the peak and Rayleigh-Jeans slope of dust emission observed at 70−500 μm in the nearby spiral galaxy M81. We find that the ratios of wave bands between 160 and 500 μm are primarily dependent on radius but that the ratio of 70 to 160 μm emission shows no clear dependence on surface brightness or radius. These
results along with analyses of the spectral energy distributions imply that the 160−500 μm emission traces 15−30 K dust heated by evolved stars in the bulge and disc whereas the 70 μm emission includes dust heated by the active galactic nucleus and young stars in star forming regions
Acute pulmonary pathology and sudden death in rats following the intravenous administration of the plasticizer, DI (2-ethylhexyl) phthalate, solubilized with Tween surfactants
Intravenous administration of 200-300 mg/kg of di(2-ethylhexyl)phthalate (DEHP) solubilized in aqueous solutions of several Tween surfactants caused respiratory distress in rats. There was a dose-dependent lethality with death generally occurring within 90 minutes after injection. The lungs from DEHP:Tween treated animals were enlarged, generally darkened, and in some cases showed hemorrhagic congestion. Neither the overt symptoms nor the morphologic alterations resulting from DEHP:Tween administration could be reproduced by intravenous administration of aqueous Tween solutions alone. The absence of pulmonary abnormalities following the intravenous administration of DEHP as an aqueous emulsion given either alone or even as soon as 2 minutes after pretreatment with Tween 80, suggests that the specific in vivo interaction between DEHP and Tween surfactants depends on the prior formation of water-soluble micelles of DEHP
- …