30,596 research outputs found

    Integrating Out Astrophysical Uncertainties

    Full text link
    Underground searches for dark matter involve a complicated interplay of particle physics, nuclear physics, atomic physics and astrophysics. We attempt to remove the uncertainties associated with astrophysics by developing the means to map the observed signal in one experiment directly into a predicted rate at another. We argue that it is possible to make experimental comparisons that are completely free of astrophysical uncertainties by focusing on {\em integral} quantities, such as g(vmin)=∫vmindv f(v)/vg(v_{min})=\int_{v_{min}} dv\, f(v)/v and ∫vthreshdv vg(v)\int_{v_{thresh}} dv\, v g(v). Direct comparisons are possible when the vminv_{min} space probed by different experiments overlap. As examples, we consider the possible dark matter signals at CoGeNT, DAMA and CRESST-Oxygen. We find that expected rate from CoGeNT in the XENON10 experiment is higher than observed, unless scintillation light output is low. Moreover, we determine that S2-only analyses are constraining, unless the charge yield Qy<2.4 electrons/keVQ_y< 2.4 {\, \rm electrons/keV}. For DAMA to be consistent with XENON10, we find for qNa=0.3q_{Na}=0.3 that the modulation rate must be extremely high (\gsim 70% for m_\chi = 7\, \gev), while for higher quenching factors, it makes an explicit prediction (0.8 - 0.9 cpd/kg) for the modulation to be observed at CoGeNT. Finally, we find CDMS-Si, even with a 10 keV threshold, as well as XENON10, even with low scintillation, would have seen significant rates if the excess events at CRESST arise from elastic WIMP scattering, making it very unlikely to be the explanation of this anomaly.Comment: 25 pages, 7 figures; v2 replaced with published versio

    TEQUILA: Temporal Question Answering over Knowledge Bases

    No full text
    Question answering over knowledge bases (KB-QA) poses challenges in handling complex questions that need to be decomposed into sub-questions. An important case, addressed here, is that of temporal questions, where cues for temporal relations need to be discovered and handled. We present TEQUILA, an enabler method for temporal QA that can run on top of any KB-QA engine. TEQUILA has four stages. It detects if a question has temporal intent. It decomposes and rewrites the question into non-temporal sub-questions and temporal constraints. Answers to sub-questions are then retrieved from the underlying KB-QA engine. Finally, TEQUILA uses constraint reasoning on temporal intervals to compute final answers to the full question. Comparisons against state-of-the-art baselines show the viability of our method

    Relaxed 2-D Principal Component Analysis by LpL_p Norm for Face Recognition

    Full text link
    A relaxed two dimensional principal component analysis (R2DPCA) approach is proposed for face recognition. Different to the 2DPCA, 2DPCA-L1L_1 and G2DPCA, the R2DPCA utilizes the label information (if known) of training samples to calculate a relaxation vector and presents a weight to each subset of training data. A new relaxed scatter matrix is defined and the computed projection axes are able to increase the accuracy of face recognition. The optimal LpL_p-norms are selected in a reasonable range. Numerical experiments on practical face databased indicate that the R2DPCA has high generalization ability and can achieve a higher recognition rate than state-of-the-art methods.Comment: 19 pages, 11 figure

    Deprojection technique for galaxy cluster considering point spread function

    Full text link
    We present a new method for the analysis of Abell 1835 observed by XMM-Newton. The method is a combination of the Direct Demodulation technique and deprojection. We eliminate the effects of the point spread function (PSF) with the Direct Demodulation technique. We then use a traditional depro-jection technique to study the properties of Abell 1835. Compared to that of deprojection method only, the central electron density derived from this method increases by 30%, while the temperature profile is similar.Comment: accepted for publication in Sciences in China -- G, the Black Hole special issu

    U(1)-decoupling, KK and BCJ relations in N=4\mathcal{N}=4 SYM

    Full text link
    We proved the color reflection relation, U(1)-decoupling, Kleiss-Kuijf and Bern-Carrasco-Johansson relation for color-ordered N=4\mathcal{N}=4 Super Yang-Mills theory using N=4\mathcal{N}=4 SYM version BCFW recursion relation, which depends only on the general properties of super-amplitudes. This verified the conjectured matter fields BCJ relation. We also show that color reflection relation and U(1)-decoupling relation are special cases of KK relation, if we consider the KK relation as a general relation, then the former two relations come out naturally as the special cases.Comment: 17 page

    Measurement of elliptic and higher order flow harmonics at sNN=2.76\sqrt{s_{NN}}=2.76 TeV Pb+Pb collisions with the ATLAS Detector

    Full text link
    The measurements of flow harmonics v2v_2-v6v_6 using the event plane and two particle correlations methods in broad pTp_T, η\eta and centrality ranges using the ATLAS detector at LHC are presented. ATLAS recorded about 9 μb−1\mu \textrm{b}^{-1} of lead-lead collision data in the 2010 heavy ion run. The full azimuthal acceptance of the ATLAS detector in ±2.5\pm2.5 units of pseudorapidity for charged hadrons and the large amount of data allows for a detailed study of the flow harmonics. The pTp_T, centrality and η\eta ranges where the two methods give consistent vnv_n and where they disagree are discussed. It is shown that the ridge as well as the so called "mach-cone" seen in two particle correlations are largely accounted for by the collective flow. Some scaling relations in the pTp_T dependence of the vnv_n are also discussed

    The CJT calculation in studying nuclear matter beyond mean field approximation

    Full text link
    We have introduced a CJT calculation in studying nuclear matter beyond mean field approximation. Based on the CJT formalism and using Walecka model, we have derived a set of coupled Dyson equations of nucleons and mesons. Neglecting the medium effects of the mesons, the usual MFT results could be reproduced. The beyond MFT calculations have been performed by thermodynamic consistently determining the meson effective masses and solving the coupled gap equations for nucleons and mesons. The numerical results for the nucleon and meson effective masses at finite temperature and chemical potential in nuclear matter are discussed.Comment: 8 pages, 8 figure
    • …
    corecore