61,331 research outputs found
Optical band edge shift of anatase cobalt-doped titanium dioxide
We report on the optical properties of magnetic cobalt-doped anatase phase
titanium dioxide Ti_{1-x}Co_{x}O_{2-d} films for low doping concentrations, 0
<= x <= 0.02, in the spectral range 0.2 to 5 eV. For well oxygenated films (d
<< 1) the optical conductivity is characterized by an absence of optical
absorption below an onset of interband transitions at 3.6 eV and a blue shift
of the optical band edge with increasing Co concentration. The absence of below
band gap absorption is inconsistent with theoretical models which contain
midgap magnetic impurity bands and suggests that strong on-site Coulomb
interactions shift the O-band to Co-level optical transitions to energies above
the gap.Comment: 5 pages, 4 figures, 1 table; Version 2 - major content revisio
Transient magnetotransport through a quantum wire
We consider an ideal parabolic quantum wire in a perpendicular magnetic
field. A simple Gaussian shaped scattering potential well or hill is flashed
softly on and off with its maximum at , mimicking a temporary broadening
or narrowing of the wire. By an extension of the Lippmann-Schwinger formalism
to time-dependent scattering potentials we investigate the effects on the
continuous current that is driven through the quantum wire with a vanishingly
small forward bias. The Lippmann-Schwinger approach to the scattering process
enables us to investigate the interplay between geometrical effects and effects
caused by the magnetic field.Comment: RevTeX (pdf-LaTeX), 11 pages with 15 included jpg figure
In situ photogalvanic acceleration of optofluidic kinetics: a new paradigm for advanced photocatalytic technologies
A multiscale-designed optofluidic reactor is demonstrated in this work, featuring an overall reaction rate constant of 1.32 s¯¹ for photocatalytic decolourization of methylene blue, which is an order of magnitude higher as compared to literature records. A novel performance-enhancement mechanism of microscale in situ photogalvanic acceleration was found to be the main reason for the superior optofluidic performance in the photocatalytic degradation of dyes as a model reaction
Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D
Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences
Thin Films of 3He -- Implications on the Identification of 3 He -A
Recently the identification of 3He-A with the axial state has been
questioned. It is suggested that the A-phase can actually be in the axiplanar
state. We point out in the present paper that experiments in a film geometry
may be useful to distinguish the above two possibilities. In particular a
second order phase transition between an axial and an axiplanar state would
occur as a function of thickness or temperature.Comment: 3 pages, no figures latex- revtex aps accepted by J. of Low
Temperature Physic
High Energy Quark-Antiquark Elastic scattering with Mesonic Exchange
We studies the high energy elastic scattering of quark anti-quark with an
exchange of a mesonic state in the channel with .
Both the normalization factor and the Regge trajectory can be calculated in
PQCD in cases of fixed (non-running) and running coupling constant. The
dependence of the Regge trajectory on the coupling constant is highly
non-linear and the trajectory is of order of in the interesting physical
range.Comment: 29 page
Facet Formation in the Negative Quenched Kardar-Parisi-Zhang Equation
The quenched Kardar-Parisi-Zhang (QKPZ) equation with negative non-linear
term shows a first order pinning-depinning (PD) transition as the driving force
is varied. We study the substrate-tilt dependence of the dynamic transition
properties in 1+1 dimensions. At the PD transition, the pinned surfaces form a
facet with a characteristic slope as long as the substrate-tilt is
less than . When , the transition is discontinuous and the critical
value of the driving force is independent of , while the transition
is continuous and increases with when . We explain these
features from a pinning mechanism involving a localized pinning center and the
self-organized facet formation.Comment: 4 pages, source TeX file and 7 PS figures are tarred and compressed
via uufile
Transverse Magnetoresistance of GaAs/AlGaAs Heterojunctions in the Presence of Parallel Magnetic Fields
We have calculated the resistivity of a GaAs\slash AlGaAs heterojunction in
the presence of both an in--plane magnetic field and a weak perpendicular
component using a semiclassical Boltzmann transport theory. These calculations
take into account fully the distortion of the Fermi contour which is induced by
the parallel magnetic field. The scattering of electrons is assumed to be due
to remote ionized impurities. A positive magnetoresistance is found as a
function of the perpendicular component, in good qualitative agreement with
experimental observations. The main source of this effect is the strong
variation of the electronic scattering rate around the Fermi contour which is
associated with the variation in the mean distance of the electronic states
from the remote impurities. The magnitude of the positive magnetoresistance is
strongly correlated with the residual acceptor impurity density in the GaAs
layer. The carrier lifetime anisotropy also leads to an observable anisotropy
in the resistivity with respect to the angle between the current and the
direction of the in--plane magnetic field.Comment: uuencoded file containing a 26 page RevTex file and 14 postscript
figures. Submitted to Phys. Rev.
Phase glass and zero-temperature phase transition in a randomly frustrated two-dimensional quantum rotor model
The ground state of the quantum rotor model in two dimensions with random
phase frustration is investigated. Extensive Monte Carlo simulations are
performed on the corresponding (2+1)-dimensional classical model under the
entropic sampling scheme. For weak quantum fluctuation, the system is found to
be in a phase glass phase characterized by a finite compressibility and a
finite value for the Edwards-Anderson order parameter, signifying long-ranged
phase rigidity in both spatial and imaginary time directions. Scaling
properties of the model near the transition to the gapped, Mott insulator state
with vanishing compressibility are analyzed. At the quantum critical point, the
dynamic exponent is greater than one. Correlation
length exponents in the spatial and imaginary time directions are given by
and , respectively, both assume values
greater than 0.6723 of the pure case. We speculate that the phase glass phase
is superconducting rather than metallic in the zero current limit.Comment: 14 pages, 4 figures, to appear in JSTA
- …