61,331 research outputs found

    Optical band edge shift of anatase cobalt-doped titanium dioxide

    Get PDF
    We report on the optical properties of magnetic cobalt-doped anatase phase titanium dioxide Ti_{1-x}Co_{x}O_{2-d} films for low doping concentrations, 0 <= x <= 0.02, in the spectral range 0.2 to 5 eV. For well oxygenated films (d << 1) the optical conductivity is characterized by an absence of optical absorption below an onset of interband transitions at 3.6 eV and a blue shift of the optical band edge with increasing Co concentration. The absence of below band gap absorption is inconsistent with theoretical models which contain midgap magnetic impurity bands and suggests that strong on-site Coulomb interactions shift the O-band to Co-level optical transitions to energies above the gap.Comment: 5 pages, 4 figures, 1 table; Version 2 - major content revisio

    Transient magnetotransport through a quantum wire

    Full text link
    We consider an ideal parabolic quantum wire in a perpendicular magnetic field. A simple Gaussian shaped scattering potential well or hill is flashed softly on and off with its maximum at t=0t=0, mimicking a temporary broadening or narrowing of the wire. By an extension of the Lippmann-Schwinger formalism to time-dependent scattering potentials we investigate the effects on the continuous current that is driven through the quantum wire with a vanishingly small forward bias. The Lippmann-Schwinger approach to the scattering process enables us to investigate the interplay between geometrical effects and effects caused by the magnetic field.Comment: RevTeX (pdf-LaTeX), 11 pages with 15 included jpg figure

    In situ photogalvanic acceleration of optofluidic kinetics: a new paradigm for advanced photocatalytic technologies

    Get PDF
    A multiscale-designed optofluidic reactor is demonstrated in this work, featuring an overall reaction rate constant of 1.32 s¯¹ for photocatalytic decolourization of methylene blue, which is an order of magnitude higher as compared to literature records. A novel performance-enhancement mechanism of microscale in situ photogalvanic acceleration was found to be the main reason for the superior optofluidic performance in the photocatalytic degradation of dyes as a model reaction

    Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D

    Get PDF
    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences

    Thin Films of 3He -- Implications on the Identification of 3 He -A

    Full text link
    Recently the identification of 3He-A with the axial state has been questioned. It is suggested that the A-phase can actually be in the axiplanar state. We point out in the present paper that experiments in a film geometry may be useful to distinguish the above two possibilities. In particular a second order phase transition between an axial and an axiplanar state would occur as a function of thickness or temperature.Comment: 3 pages, no figures latex- revtex aps accepted by J. of Low Temperature Physic

    High Energy Quark-Antiquark Elastic scattering with Mesonic Exchange

    Full text link
    We studies the high energy elastic scattering of quark anti-quark with an exchange of a mesonic state in the tt channel with −t/Λ2≫1-t/\Lambda^{2} \gg 1. Both the normalization factor and the Regge trajectory can be calculated in PQCD in cases of fixed (non-running) and running coupling constant. The dependence of the Regge trajectory on the coupling constant is highly non-linear and the trajectory is of order of 0.20.2 in the interesting physical range.Comment: 29 page

    Facet Formation in the Negative Quenched Kardar-Parisi-Zhang Equation

    Full text link
    The quenched Kardar-Parisi-Zhang (QKPZ) equation with negative non-linear term shows a first order pinning-depinning (PD) transition as the driving force FF is varied. We study the substrate-tilt dependence of the dynamic transition properties in 1+1 dimensions. At the PD transition, the pinned surfaces form a facet with a characteristic slope scs_c as long as the substrate-tilt mm is less than scs_c. When m<scm<s_c, the transition is discontinuous and the critical value of the driving force Fc(m)F_c(m) is independent of mm, while the transition is continuous and Fc(m)F_c(m) increases with mm when m>scm>s_c. We explain these features from a pinning mechanism involving a localized pinning center and the self-organized facet formation.Comment: 4 pages, source TeX file and 7 PS figures are tarred and compressed via uufile

    Transverse Magnetoresistance of GaAs/AlGaAs Heterojunctions in the Presence of Parallel Magnetic Fields

    Full text link
    We have calculated the resistivity of a GaAs\slash AlGaAs heterojunction in the presence of both an in--plane magnetic field and a weak perpendicular component using a semiclassical Boltzmann transport theory. These calculations take into account fully the distortion of the Fermi contour which is induced by the parallel magnetic field. The scattering of electrons is assumed to be due to remote ionized impurities. A positive magnetoresistance is found as a function of the perpendicular component, in good qualitative agreement with experimental observations. The main source of this effect is the strong variation of the electronic scattering rate around the Fermi contour which is associated with the variation in the mean distance of the electronic states from the remote impurities. The magnitude of the positive magnetoresistance is strongly correlated with the residual acceptor impurity density in the GaAs layer. The carrier lifetime anisotropy also leads to an observable anisotropy in the resistivity with respect to the angle between the current and the direction of the in--plane magnetic field.Comment: uuencoded file containing a 26 page RevTex file and 14 postscript figures. Submitted to Phys. Rev.

    Phase glass and zero-temperature phase transition in a randomly frustrated two-dimensional quantum rotor model

    Full text link
    The ground state of the quantum rotor model in two dimensions with random phase frustration is investigated. Extensive Monte Carlo simulations are performed on the corresponding (2+1)-dimensional classical model under the entropic sampling scheme. For weak quantum fluctuation, the system is found to be in a phase glass phase characterized by a finite compressibility and a finite value for the Edwards-Anderson order parameter, signifying long-ranged phase rigidity in both spatial and imaginary time directions. Scaling properties of the model near the transition to the gapped, Mott insulator state with vanishing compressibility are analyzed. At the quantum critical point, the dynamic exponent zdyn≃1.17z_{\rm dyn}\simeq 1.17 is greater than one. Correlation length exponents in the spatial and imaginary time directions are given by ν≃0.73\nu\simeq 0.73 and νz≃0.85\nu_z\simeq 0.85, respectively, both assume values greater than 0.6723 of the pure case. We speculate that the phase glass phase is superconducting rather than metallic in the zero current limit.Comment: 14 pages, 4 figures, to appear in JSTA
    • …
    corecore