2 research outputs found

    EGFR related mutational status and association to clinical outcome of third-line cetuximab-irinotecan in metastatic colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As supplement to <it>KRAS </it>mutational analysis<it>, BRAF and PIK3CA </it>mutations as well as expression of PTEN may account for additional non-responders to anti-EGFR-MoAbs treatment. The aim of the present study was to investigate the utility as biomarkers of these mutations in a uniform cohort of patients with metastatic colorectal cancer treated with third-line cetuximab/irinotecan.</p> <p>Methods</p> <p>One-hundred-and-seven patients were prospectively included in the study. Mutational analyses of <it>KRAS, BRAF </it>and <it>PIK3CA </it>were performed on DNA from confirmed malignant tissue using commercially available kits. Loss of PTEN and EGFR was assessed by immunohistochemistry.</p> <p>Results</p> <p>DNA was available in 94 patients. The frequency of KRAS, <it>BRAF </it>and <it>PIK3CA </it>mutations were 44%, 3% and 14%, respectively. All were non-responders. EGF receptor status by IHC and loss of PTEN failed to show any clinical importance. <it>KRAS </it>and <it>BRAF </it>were mutually exclusive. Supplementing <it>KRAS </it>analysis with <it>BRAF </it>and <it>PIK3CA </it>indentified additional 11% of non-responders. Patient with any mutation had a high risk of early progression, whereas triple-negative status implied a response rate (RR) of 41% (p < 0.001), a disease control (DC) rate of 73% (p < 001), and a significantly higher PFS of 7.7(5.1-8.6 95%CI) versus 2.3 months (2.1-3.695%CI) (p < 0.000).</p> <p>Conclusion</p> <p>Triple-negative status implied a clear benefit from treatment, and we suggest that patient selection for third-line combination therapy with cetuximab/irinotecan could be based on triple mutational testing.</p

    Prebiotic Effects of Wheat Arabinoxylan Related to the Increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in Diet-Induced Obese Mice

    Get PDF
    BACKGROUND: Alterations in the composition of gut microbiota--known as dysbiosis--has been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients targeting the gut with beneficial effect for host adiposity. We test the ability of a specific concentrate of water-extractable high molecular weight arabinoxylans (AX) from wheat to modulate both the gut microbiota and lipid metabolism in high-fat (HF) diet-induced obese mice. METHODOLOGY/PRINCIPAL FINDINGS: Mice were fed either a control diet (CT) or a HF diet, or a HF diet supplemented with AX (10% w/w) during 4 weeks. AX supplementation restored the number of bacteria that were decreased upon HF feeding, i.e. Bacteroides-Prevotella spp. and Roseburia spp. Importantly, AX treatment markedly increased caecal bifidobacteria content, in particular Bifidobacterium animalis lactis. This effect was accompanied by improvement of gut barrier function and by a lower circulating inflammatory marker. Interestingly, rumenic acid (C18:2 c9,t11) was increased in white adipose tissue due to AX treatment, suggesting the influence of gut bacterial metabolism on host tissue. In parallel, AX treatment decreased adipocyte size and HF diet-induced expression of genes mediating differentiation, fatty acid uptake, fatty acid oxidation and inflammation, and decreased a key lipogenic enzyme activity in the subcutaneous adipose tissue. Furthermore, AX treatment significantly decreased HF-induced adiposity, body weight gain, serum and hepatic cholesterol accumulation and insulin resistance. Correlation analysis reveals that Roseburia spp. and Bacteroides/Prevotella levels inversely correlate with these host metabolic parameters. CONCLUSIONS/SIGNIFICANCE: Supplementation of a concentrate of water-extractable high molecular weight AX in the diet counteracted HF-induced gut dysbiosis together with an improvement of obesity and lipid-lowering effects. We postulate that hypocholesterolemic, anti-inflammatory and anti-obesity effects are related to changes in gut microbiota. These data support a role for wheat AX as interesting nutrients with prebiotic properties related to obesity prevention
    corecore