216 research outputs found

    Energy Landscape and Overlap Distribution of Binary Lennard-Jones Glasses

    Full text link
    We study the distribution of overlaps of glassy minima, taking proper care of residual symmetries of the system. Ensembles of locally stable, low lying glassy states are efficiently generated by rapid cooling from the liquid phase which has been equilibrated at a temperature TrunT_{run}. Varying TrunT_{run}, we observe a transition from a regime where a broad range of states are sampled to a regime where the system is almost always trapped in a metastable glassy state. We do not observe any structure in the distribution of overlaps of glassy minima, but find only very weak correlations, comparable in size to those of two liquid configurations.Comment: 7 pages, 5 figures, uses europhys-style. Minor notational changes, typos correcte

    Elasticity of highly cross-linked random networks

    Full text link
    Starting from a microscopic model of randomly cross-linked particles with quenched disorder, we calculate the Laudau-Wilson free energy S for arbitrary cross-link densities. Considering pure shear deformations, S takes the form of the elastic energy of an isotropic amorphous solid state, from which the shear modulus can be identified. It is found to be an universal quantity, not depending on any microscopic length-scales of the model.Comment: 6 pages, 5 figure

    Goldstone fluctuations in the amorphous solid state

    Full text link
    Goldstone modes in the amorphous solid state, resulting from the spontaneous breaking of translational symmetry due to random localisation of particles, are discussed. Starting from a microscopic model with quenched disorder, the broken symmetry is identified to be that of relative translations of the replicas. Goldstone excitations, corresponding to pure shear deformations, are constructed from long wavelength distortions of the order parameter. The elastic free energy is computed, and it is shown that Goldstone fluctuations destroy localisation in two spatial dimensions, yielding a two-dimensional amorphous solid state characterised by power-law correlations.Comment: 7 pages, 2 figure

    Glassy states and microphase separation in cross-linked homopolymer blends

    Full text link
    The physical properties of blends of distinct homopolymers, cross-linked beyond the gelation point, are addressed via a Landau approach involving a pair of coupled order-parameter fields: one describing vulcanisation, the other describing local phase separation. Thermal concentration fluctuations, present at the time of cross-linking, are frozen in by cross-linking, and the structure of the resulting glassy fluctuations is analysed at the Gaussian level in various regimes, determined by the relative values of certain physical length-scales. The enhancement, due to gelation, of the stability of the blend with respect to demixing is also analysed. Beyond the corresponding stability limit, gelation prevents complete demixing, replacing it by microphase separation, which occurs up to a length-scale set by the rigidity of the network, as a simple variational scheme reveals.Comment: 7 pages, 6 figure

    Goldstone-type fluctuations and their implications for the amorphous solid state

    Full text link
    In sufficiently high spatial dimensions, the formation of the amorphous (i.e. random) solid state of matter, e.g., upon sufficent crosslinking of a macromolecular fluid, involves particle localization and, concommitantly, the spontaneous breakdown of the (global, continuous) symmetry of translations. Correspondingly, the state supports Goldstone-type low energy, long wave-length fluctuations, the structure and implications of which are identified and explored from the perspective of an appropriate replica field theory. In terms of this replica perspective, the lost symmetry is that of relative translations of the replicas; common translations remain as intact symmetries, reflecting the statistical homogeneity of the amorphous solid state. What emerges is a picture of the Goldstone-type fluctuations of the amorphous solid state as shear deformations of an elastic medium, along with a derivation of the shear modulus and the elastic free energy of the state. The consequences of these fluctuations -- which dominate deep inside the amorphous solid state -- for the order parameter of the amorphous solid state are ascertained and interpreted in terms of their impact on the statistical distribution of localization lengths, a central diagnostic of the the state. The correlations of these order parameter fluctuations are also determined, and are shown to contain information concerning further diagnostics of the amorphous solid state, such as spatial correlations in the statistics of the localization characteristics. Special attention is paid to the properties of the amorphous solid state in two spatial dimensions, for which it is shown that Goldstone-type fluctuations destroy particle localization, the order parameter is driven to zero, and power-law order-parameter correlations hold.Comment: 20 pages, 3 figure

    Orientational order and glassy states in networks of semiflexible polymers

    Full text link
    Motivated by the structure of networks of cross-linked cytoskeletal biopolymers, we study the orientationally ordered phases in two-dimensional networks of randomly cross-linked semiflexible polymers. We consider permanent cross-links which prescribe a finite angle and treat them as quenched disorder in a semi-microscopic replica field theory. Starting from a fluid of un-cross-linked polymers and small polymer clusters (sol) and increasing the cross-link density, a continuous gelation transition occurs. In the resulting gel, the semiflexible chains either display long range orientational order or are frozen in random directions depending on the value of the crossing angle, the crosslink concentration and the stiffness of the polymers. A crossing angle θ∼2π/M\theta\sim 2\pi/M leads to long range MM-fold orientational order, e.g., "hexatic" or "tetratic" for θ=60∘\theta=60^{\circ} or 90∘90^{\circ}, respectively. The transition is discontinuous and the critical cross-link density depends on the bending stiffness of the polymers and the cross-link geometry: the higher the stiffness and the lower MM, the lower the critical number of cross-links. In between the sol and the long range ordered state, we always observe a gel which is a statistically isotropic amorphous solid (SIAS) with random positional and random orientational localization of the participating polymers.Comment: 20 pages, added references, minor changes, final version as published in PR

    Universality and its Origins at the Amorphous Solidification Transition

    Full text link
    Systems undergoing an equilibrium phase transition from a liquid state to an amorphous solid state exhibit certain universal characteristics. Chief among these are the fraction of particles that are randomly localized and the scaling functions that describe the order parameter and (equivalently) the statistical distribution of localization lengths for these localized particles. The purpose of this Paper is to discuss the origins and consequences of this universality, and in doing so, three themes are explored. First, a replica-Landau-type approach is formulated for the universality class of systems that are composed of extended objects connected by permanent random constraints and undergo amorphous solidification at a critical density of constraints. This formulation generalizes the cases of randomly cross-linked and end-linked macromolecular systems, discussed previously. The universal replica free energy is constructed, in terms of the replica order parameter appropriate to amorphous solidification, the value of the order parameter is obtained in the liquid and amorphous solid states, and the chief universal characteristics are determined. Second, the theory is reformulated in terms of the distribution of local static density fluctuations rather than the replica order parameter. It is shown that a suitable free energy can be constructed, depending on the distribution of static density fluctuations, and that this formulation yields precisely the same conclusions as the replica approach. Third, the universal predictions of the theory are compared with the results of extensive numerical simulations of randomly cross-linked macromolecular systems, due to Barsky and Plischke, and excellent agreement is found.Comment: 10 pages, including 3 figures (REVTEX

    Soft random solids and their heterogeneous elasticity

    Get PDF
    Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the \emph{structure} of soft random solids is a result of the fluctuations locked-in at their synthesis, which also brings heterogeneity in their \emph{elastic properties}. Vulcanization theory studies semi-microscopic models of random-solid-forming systems, and applies replica field theory to deal with their quenched disorder and thermal fluctuations. The elastic deformations of soft random solids are argued to be described by the Goldstone sector of fluctuations contained in vulcanization theory, associated with a subtle form of spontaneous symmetry breaking that is associated with the liquid-to-random-solid transition. The resulting free energy of this Goldstone sector can be reinterpreted as arising from a phenomenological description of an elastic medium with quenched disorder. Through this comparison, we arrive at the statistics of the quenched disorder of the elasticity of soft random solids, in terms of residual stress and Lam\'e-coefficient fields. In particular, there are large residual stresses in the equilibrium reference state, and the disorder correlators involving the residual stress are found to be long-ranged and governed by a universal parameter that also gives the mean shear modulus.Comment: 40 pages, 7 figure

    The integrated density of states of the random graph Laplacian

    Full text link
    We analyse the density of states of the random graph Laplacian in the percolating regime. A symmetry argument and knowledge of the density of states in the nonpercolating regime allows us to isolate the density of states of the percolating cluster (DSPC) alone, thereby eliminating trivially localised states due to finite subgraphs. We derive a nonlinear integral equation for the integrated DSPC and solve it with a population dynamics algorithm. We discuss the possible existence of a mobility edge and give strong evidence for the existence of discrete eigenvalues in the whole range of the spectrum.Comment: 4 pages, 1 figure. Supplementary material available at http://www.theorie.physik.uni-goettingen.de/~aspel/data/spectrum_supplement.pd

    Variational bounds for the shear viscosity of gelling melts

    Full text link
    We study shear stress relaxation for a gelling melt of randomly crosslinked, interacting monomers. We derive a lower bound for the static shear viscosity η\eta, which implies that it diverges algebraically with a critical exponent k≥2ν−βk\ge 2\nu-\beta. Here, ν\nu and β\beta are the critical exponents of percolation theory for the correlation length and the gel fraction. In particular, the divergence is stronger than in the Rouse model, proving the relevance of excluded-volume interactions for the dynamic critical behaviour at the gel transition. Precisely at the critical point, our exact results imply a Mark-Houwink relation for the shear viscosity of isolated clusters of fixed size.Comment: 5 pages; CHANGES: typos corrected, some references added; version as publishe
    • …
    corecore